精英家教网 > 高中数学 > 题目详情
6.已知f(x)=10x,g(x)=2x,x0<0,则(  )
A.1>f(x0)>g(x0B.1>g(x0)>f(x0C.f(x0)>g(x0)>1D.g(x0)>f(x0)>2

分析 根据指数函数的图象和性质,结合已知中f(x)=10x,g(x)=2x,x0<0,可得结论.

解答 解:∵f(x)=10x,g(x)=2x,x0<0,
∴1>2x0>10x0
即1>g(x0)>f(x0),
故选:B

点评 本题考查的知识点是指数函数的图象和性质,熟练掌握指数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.适合不等式0<$\frac{(x-1)^{2}}{x+2}$<1的整数解为{0,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=1g$\frac{1-x}{1+x}$,|x|<1,则f($\frac{{x}^{3}+3x}{1+3{x}^{2}}$)等于(  )
A.f2(x)B.f3(x)C.2f(x)D.3f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向$\overrightarrow{a}$=(x-1,2)$\overrightarrow{b}$=(4,x+1),则“x=-3”是$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知幂函数f(x)的图象过点(25,5).
(1)求f(x)的解析式;
(2)若函数g(x)=f(2-lgx),求g(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x2-ax-b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m-3,m+1),则实数c的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.化简$\sqrt{6\frac{1}{4}}$×($\frac{1}{2}$)-2所得的结果是(  )
A.5B.10C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求y=$\sqrt{3+3x}$+$\sqrt{-3x+2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用配方法求下列函数的定义域:
(1)y=$\sqrt{{x}^{2}-2x}$;
(2)y=$\sqrt{{x}^{2}+3x-4}$;
(3)y=$\sqrt{-{x}^{2}+4x+12}$.

查看答案和解析>>

同步练习册答案