精英家教网 > 高中数学 > 题目详情
15.已知等差数列{an}的公差为d,a3=5,且(a1x+d)5的展开式中x2与x3的系数之比为2:1.
(1)求(a1x-a26的展开式中二项式系数最大的项;
(2)设[a1x2-(a3-a1)x+a3]n=b0+b1(x-2)+b2(x-2)2+…+b2n(x-2)2n,n∈N*,求a1b1+a2b2+…+a2nb2n的值;
(3)当n≥2时,求证:$({a}_{n+1})^{{a}_{n+1}}$>11×16n+8n4

分析 (1)根据等差数列的性质和二项式展开定理求出a1=1,d=2,即可求出展开式中二项式系数最大的项,
(2)根据二项式展开定理,得到b1=b3=b5=…=b2n-1=0,b0=Cn0,b2=Cn1,…b2n=Cnn,继而得到a1b1+a2b2+…+a2nb2n=3Cn1+7Cn2+11Cn3+…+(4n-1)Cnn,利用倒序相加法即可求出答案,
(3)根据二项式展开定理和多次放缩即可证明.

解答 解:(1)等差数列{an}的公差为d,a3=5,且(a1x+d)5的展开式中x2与x3的系数之比为2:1.
∴a1=5-2d且${C}_{5}^{3}({a}_{1})^{2}{d}^{3}=2{C}_{5}^{2}{(a}_{1})^{3}{d}^{2}$,
解得a1=1,d=2,
∴an=2n-1,
∴(a1x-a26=(x-3)6
∴(x-3)6的展开式中二项式系数最大的项是第四项为${C}_{6}^{3}{x}^{3}(-3)^{3}$=-540x3
(2)∵a1=1,a3=5,则[a1x2-(a3-a1)x+a3]n=[(x-2)2+1]n=Cn0[(x-2)2]0+Cn1[(x-2)2]1+…+Cnn-1[(x-2)2]n-1+Cnn[(x-2)2]n
=Cn0(x-2)2+Cn1(x-2)2+…+Cnn-1(x-2)2n-2+Cnn(x-2)2n
=b0+b1(x-2)+b2(x-2)2+…+b2n(x-2)2n,n∈N*
∴b1=b3=b5=…=b2n-1=0,b0=Cn0,b2=Cn1,…b2n=Cnn
∴a1b1+a2b2+…+a2nb2n=3Cn1+7Cn2+11Cn3+…+(4n-1)Cnn
令S=3Cn1+7Cn2+11Cn3+…+(4n-1)Cnn
则S=[(-1)Cn0+3Cn1+Cn2+11Cn3+…+(4n-1)Cnn]+1
即S=[[(4n-1)Cnn+(4n-5)Cnn-1+…+(-1)Cn0]+1,
∴2S=(4n-2)(Cn0+Cn1+Cn2+Cn3+…+Cnn)+2
∴S=(2n-1)×2n+1;
(3):$({a}_{n+1})^{{a}_{n+1}}$=(2n+1)2n+1=(2n)2n+1+C2n1(2n)2n+C2n2(2n)2n-1+…+C2n2n-1(2n)2+1,
∵n>2,
∴2n>4,
∴$({a}_{n+1})^{{a}_{n+1}}$=(2n+1)2n+1>42n+1+C5142n+C5242n-1+C2n2(2n)2>4×16n+5×16n+$\frac{5}{2}$×16n+8n4>11×16n+8n4

点评 本题考查了二项式展开定理和等差数列的性质,以及倒序相加法和放缩法,运算量大,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sinx(2$\sqrt{3}$cosx-sinx)+1
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)讨论f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(1)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置,并求直线DE到平面AB1C1的距离;如果不存在,请说明理由;
(2)求截面DEG与底面ABC所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>0,则a+$\frac{8}{2a+1}$的最小值为(  )
A.2$\sqrt{2}$B.4C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,如果输入的N是5,那么输出的p是(  )
A.120B.720C.1440D.5040

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若$|{\overrightarrow{AB}}|=3,|{\overrightarrow{AC}}|=4$,∠BAC=30°,则$\overrightarrow{AB}•\overrightarrow{AC}$=6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.二次函数y=x2-x-2的图象如图所示,则函数值y<0时x的取值范围是(  )
A.x<-1B.x>2C.-1<x<2D.x<-1或x>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若非零向量$\overrightarrow a$与$\overrightarrow b$满足:$|\overrightarrow a|=2$,$(\overrightarrow a+\overrightarrow b)•\overrightarrow a=0$,$(2\overrightarrow a+\overrightarrow b)⊥\overrightarrow b$,则$|\overrightarrow b|$=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a>1,b>1,且$\frac{1}{4}lna,\frac{1}{4},lnb$成等比数列,则ab的最小值为e.

查看答案和解析>>

同步练习册答案