精英家教网 > 高中数学 > 题目详情
6、已知f(x)是定义在实数集R上的函数,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=2x-x2
(1)求x∈[-2,0]时,f(x)的表达式;
(2)证明f(x)是R上的奇函数.
分析:(1)利用f(x+2)=-f(x),可由x∈[0,2]时的解析式求x∈[-2,0]时的解析式;
(2)首先证明x∈[-2,2]时f(x)是奇函数,然后证明f(x)是以4为周期的周期函数,则问题解决.
解答:解:(1)因为x∈[0,2]时,f(x)=2x-x2
所以x∈[-2,0]时,x+2∈[0,2],
则f(x+2)=2(x+2)-(x+2)2
=-x2-2x,x∈[-2,0]
又f(x+2)=-f(x),
所以f(x)=x2+2x,x∈[-2,0].
(2)证明:由(1)知f(x)=x2+2x,x∈[-2,0],
则f(-x)=x2-2x,x∈[-2,0],
且f(x)=2x-x2,x∈[0,2],
所以f(-x)=-f(x),x∈[-2,2],
即f(x)在[-2,2]上是奇函数.
又f(x+2)=-f(x),x∈R,则f(x)=-f(x-2),x∈R,
所以f(x+2)=f(x-2),即f(x+4)=f(x),
亦即f(x)是以4为周期的函数,
故f(x)是R上的奇函数.
点评:本题综合考查函数奇偶性与周期性知识的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案