分析 (1)将a=1的值代入f(x)的表达式,画出函数的图象,读出单调区间即可;(2)问题掌握解关于a的不等式组,解出即可.
解答 解:(1)a=1时:f(x)=x2-2|x|-3,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-3,x≥0}\\{{x}^{2}+2x-3,x<0}\end{array}\right.$
画出函数的图象,如图示:
,
∴f(x)的递增区间是[-1,0]和[1,+∞);
(2)由$\left\{\begin{array}{l}{f(1)=-3a-1}\\{f(0)=-3a}\end{array}\right.$得:-3a-1<1<-3a,
解得:-$\frac{2}{3}$<a<-$\frac{1}{3}$.
点评 本题考查了二次函数的性质,考查函数的图象,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{x}{3}$+$\frac{2}{3}$ | B. | y=-$\frac{x}{3}$+$\frac{2}{3}$ | ||
| C. | y=-3x-2 | D. | y=-3x+2 | ||
| E. | 以上结果均不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | I>1 | B. | I<1 | C. | I=1 | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{4}$ | B. | $\frac{17}{4}$ | C. | $\frac{1}{2}ln2$ | D. | 2ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com