精英家教网 > 高中数学 > 题目详情

把1,2,……,100这100个自然数任意分成10组,每组10个数,将每组中最大的数取出来,所得10个数的和为S。若S的最大值为M,最小值为N,则M+N=       

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…,这些数叫做三角形数,其通项为
n(n+1)
2
,前n项和为sn=
n(n+1)(n+2)
6
,如下图所示,有一列三角形数表,其位于三角形的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列,依次记各三角形数表中的所有数之和为an,则a1=
0+2+6
4
=
2(1+3)
4
=2,a2=
0+3+9+18
9
=
3(1+3+6)
9
=
10
3
精英家教网
(1)求a3,a4,并写出an的表达式;
(2)令bn=
an
an+1
+
an+1
an
,证明2n<b1+b2+b3+…+bn<2n+2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

11、把1,2,…,100这100个自然数任意分成10组,每组10个数,将每组中最大的数取出来,所得10个数的和的最大值为M,最小值为N,则M+N=
1505

查看答案和解析>>

科目:高中数学 来源: 题型:

在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为(  )
精英家教网
A、n
B、
n(n+1)
2
C、n2-1
D、
n(n-1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形如图所示,设第n个三角形数为f(n),则
1
f(1)
+
1
f(2)
+
1
f(3)
…+
1
f(n)
=
2n
n+1
2n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在古希腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形则第n个三角形数为
n(n+1)
2
n(n+1)
2

查看答案和解析>>

同步练习册答案