精英家教网 > 高中数学 > 题目详情
14.函数y=$\frac{2sinx-1}{3sinx+2}$的值域为(-∞,$\frac{1}{5}$]∪[3,+∞),若x∈[$\frac{π}{2}$,$\frac{3π}{2}$),其值域为(-∞,$\frac{1}{5}$]∪(3,+∞).

分析 把已知等式变形,求出sinx,利用三角函数的有界性求得答案.

解答 解:由$y=\frac{2sinx-1}{3sinx+2}$,得3ysinx+2y=2sinx-1,
即sinx=$\frac{2y+1}{2-3y}$,
∵|sinx|≤1,∴|$\frac{2y+1}{2-3y}$|≤1,即|2y+1|≤|2-3y|,解得:$y≤\frac{1}{5}$或y≥3,
∴$y=\frac{2sinx-1}{3sinx+2}$的值域为(-∞,$\frac{1}{5}$]∪[3,+∞);
当x∈[$\frac{π}{2},\frac{3π}{2}$)时,满足-1<sinx|≤1,
∴$-1<\frac{2y+1}{2-3y}≤1$,
解得:$y≤\frac{1}{5}$或y>3.
此时函数的定义域为(-∞,$\frac{1}{5}$]∪(3,+∞).
故答案为:(-∞,$\frac{1}{5}$]∪[3,+∞);(-∞,$\frac{1}{5}$]∪(3,+∞).

点评 本题考查函数值域的求法,考查三角函数的有界性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四梭锥A-BCDE中,EB=EA=AB=BC.,∠EBC=90°,M为AC的中点,AB⊥EM.
(1)求证:平面ABE⊥平面ABC;
(2)求二面角B-EM-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x+y+z=0且xyz=2,求|x|+|y|+|z|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知|a|=5,|b|=3,且|a+b|=|a|+|b|,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x+1|-|x-2|.
(1)求不等式f(x)>0的解集;
(2)若不等式|m+1|≥f(x)+3|x-2|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,PA=AD=a,AB=2a.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥CD;
(3)PC与平面ABCD所成角的大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,矩形ABCD所在平面与平面PAD垂直,PA⊥AD,且AD=2AB,E为BC上的动点.
(1)当E为BC的中点时,求证:PE⊥DE;
(2)若PA=AB,在线段BC上是否存在点E,使得二面角P-ED-A的大小为$\frac{π}{4}$,若存在,确定点E的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,若c=2b=4,B=$\frac{π}{6}$,则∠A的平分线AD的长等于(  )
A.$\sqrt{5}$B.3C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图:直三棱柱ABC-A1B1C1,底面三角形ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,M、N分别为A1B1、AB的中点.
(1)求证:平面A1NC∥平面BMC1
(2)求异面直线A1C与C1N所成角的大小;
(3)求点A到平面A1NC的距离;
(4)直线A1N与平面ACC1A1所成角的大小;
(5)二面角A1-CN-A的大小.

查看答案和解析>>

同步练习册答案