精英家教网 > 高中数学 > 题目详情
11.已知α为钝角,sinα=$\frac{2\sqrt{5}}{5}$,则tan($\frac{π}{4}$+α)=(  )
A.3B.$\frac{1}{3}$C.-3D.-$\frac{1}{3}$

分析 由已知利用同角三角函数基本关系式可求cosα,tanα的值,进而利用两角和的正切函数公式可求tan($\frac{π}{4}$+α)的值.

解答 解:∵α为钝角,sinα=$\frac{2\sqrt{5}}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{5}$,tanα=$\frac{sinα}{cosα}$=-2,
∴tan($\frac{π}{4}$+α)=$\frac{tan\frac{π}{4}+tanα}{1-tan\frac{π}{4}tanα}$=$\frac{1+(-2)}{1-1×(-2)}$=-$\frac{1}{3}$.
故选:D.

点评 本题主要考查了同角三角函数基本关系式,两角和的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数y=loga(a2-ax-2)在[0,1]上是减函数,则a的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在数列{an}中,若a1=6,an+1=3an+3n+1,(n∈N*),则an=2n•3n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.为了解2400名学生的学习情况,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,则分段间隔为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\left\{\begin{array}{l}{-x-2(x≤-1)}\\{-1(-1<x<1)}\\{x-2(x≥1)}\end{array}\right.$
(1)画出函数f(x)的图象并求f(2)+f(0)+f(-2)的值;
(2)若f(x)=3,求x的值;
(3)若f(x)≥2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设集合A={x|x2-3x+2=0},B={x|x2-ax+2=0},若AUB=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四边形ABCD是菱形,DE⊥平面ABCD,AF∥DE,DE=3AF.
(1)求证:平面BAF∥平面CDE;
(2)求证:平面EAC⊥平面EBD;
(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个盒子中装有四张卡片,每张卡片上写有一个数字,数字分别是1,2,3,4,现从盒子中随机抽取卡片,每张卡片被抽到的概率相等.
(1)若一次抽取三张卡片,求抽到的三张卡片上的数字之和大于7的概率;
(2)若第一次抽一张卡片,放回后搅匀再抽取一张卡片,求两次抽取中至少有一次抽到写有数字3的卡片的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5},M={3,4,5},N={1,2,5},则集合{1,2}可表示为(  )
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∪(∁UN)

查看答案和解析>>

同步练习册答案