| A. | 3 | B. | $\frac{1}{3}$ | C. | -3 | D. | -$\frac{1}{3}$ |
分析 由已知利用同角三角函数基本关系式可求cosα,tanα的值,进而利用两角和的正切函数公式可求tan($\frac{π}{4}$+α)的值.
解答 解:∵α为钝角,sinα=$\frac{2\sqrt{5}}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{5}$,tanα=$\frac{sinα}{cosα}$=-2,
∴tan($\frac{π}{4}$+α)=$\frac{tan\frac{π}{4}+tanα}{1-tan\frac{π}{4}tanα}$=$\frac{1+(-2)}{1-1×(-2)}$=-$\frac{1}{3}$.
故选:D.
点评 本题主要考查了同角三角函数基本关系式,两角和的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N | B. | (∁UM)∩N | C. | M∩(∁UN) | D. | (∁UM)∪(∁UN) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com