精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=$\left\{\begin{array}{l}{-x-2(x≤-1)}\\{-1(-1<x<1)}\\{x-2(x≥1)}\end{array}\right.$
(1)画出函数f(x)的图象并求f(2)+f(0)+f(-2)的值;
(2)若f(x)=3,求x的值;
(3)若f(x)≥2,求x的取值范围.

分析 (1)分段作出函数的图象,即可得到f(x)的图象;然后求解函数值即可.
(2)由图象,f(x)=3,列出方程,可求x的值;
(3)利用函数的图象,通过f(x)≥2,即可列出不等式求解即可.

解答 解:(1)函数f(x)=$\left\{\begin{array}{l}{-x-2(x≤-1)}\\{-1(-1<x<1)}\\{x-2(x≥1)}\end{array}\right.$
函数图象如图所示:
f(2)+f(0)+f(-2)=0-1+0=-1.
(2)由图象,f(x)=3,则:-x-2=3,解得x=-5.
x-2=3,解得x=5.
(3)由图象,f(x)≥2,可知:-x-2≥2,解得x≤-4;
x-2≥2解得x≥4,不等式的解集为:{x|x≤-4或x≥4}.

点评 本题考查函数的图象,考查数形结合的数学思想,正确作出分段函数的图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=x($\frac{1}{2}$)x+$\frac{1}{x+2}$,O为坐标原点,An为函数y=f(x)图象上横坐标为n(n∈N*)的点,向量$\overrightarrow{O{A_n}}$与向量$\overrightarrow i$=(1,0)的夹角为αn,则满足tanα1+tanα2+…+tanαn<$\frac{5}{4}$的最大整数n的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=$\frac{x}{{e}^{x}}$-ax+a,若存在唯一的整数x0,使得f(x0)>1,则a的取值范围是(  )
A.(1,2]B.(1,$\frac{e+1}{2}$]C.(1,$\frac{2e}{3}$]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=${∫}_{0}^{2}$(1-2x)dx,则二项式($\frac{1}{2}$x2+$\frac{a}{x}$)6的常数项是(  )
A.240B.-240C.-60D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设Sn为等差数列{an}的前n项和,其中a1=1,且$\frac{{S}_{n}}{{a}_{n}}$=λan+1(n∈N*).记bn=$\frac{{a}_{n}}{{3}^{n}}$,数列{bn}的前n项和为Tn,若对任意的n≥k(k∈N*),都有|Tn-$\frac{3}{4}$|<$\frac{1}{4n}$,则常数k的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知α为钝角,sinα=$\frac{2\sqrt{5}}{5}$,则tan($\frac{π}{4}$+α)=(  )
A.3B.$\frac{1}{3}$C.-3D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b为非零实数,z=a+bi,“z2为纯虚数”是“a=b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,D为AA1的中点,E为BC的中点.
(1)求证:直线AE∥平面BDC1
(2)若三棱柱 ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1与平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过圆O外一点P,作圆的切线PA、PB,A、B为切点,M为弦AB上一点,过M作直线分别交PA、PB于点C、D.
(Ⅰ)若BD=2,AC=3,MC=4,求线段MD的长;
(Ⅱ)若MO⊥CD,求证:MD=MC.

查看答案和解析>>

同步练习册答案