精英家教网 > 高中数学 > 题目详情
16.过圆O外一点P,作圆的切线PA、PB,A、B为切点,M为弦AB上一点,过M作直线分别交PA、PB于点C、D.
(Ⅰ)若BD=2,AC=3,MC=4,求线段MD的长;
(Ⅱ)若MO⊥CD,求证:MD=MC.

分析 (Ⅰ)过点C作CE∥PD交AB于点E,运用两直线平行的性质定理和相似三角形的判定和性质,结合圆的切线的性质:切线长相等,即可求得MD;
(Ⅱ)连接OA、OB、OC、OD,运用切线的性质,证得四点A、C、M、O共圆,四点B、D、O、M共圆,可得同弧所对的圆周角相等,再由等腰三角形的三线合一,即可得证.

解答 解:(Ⅰ)如图1,
过点C作CE∥PD交AB于点E,
则∠PBA=∠CEA,
且△MCE∽△MDB,
所以$\frac{MC}{MD}=\frac{EC}{BD}$.
因为PA、PB是圆的切线,
所以∠PAB=∠PBA,
所以∠PAB=∠CEA,
从而$AC=EC,\frac{MC}{MD}=\frac{AC}{BD}$,
得$MD=\frac{MC}{AC}•BD$=$\frac{4×2}{3}$=$\frac{8}{3}$;
证明:(Ⅱ)如图2,连接OA、OB、OC、OD,
则OA⊥PA,OB⊥PB.
因为MO⊥CD,所以∠OMD=∠OBD=∠OMC=∠OAC=90°,
故四点A、C、M、O共圆,四点B、D、O、M共圆,
所以∠OCM=∠OAM,∠ODM=∠OBM.
又OA=OB,
所以∠OAM=∠OBM,
故∠OCM=∠ODM,OC=OD.
从而MD=MC.

点评 本题考查相似三角形的判定和性质定理的运用,考查四点共圆的判定和圆的切线的性质及同弧所对圆周角相等,考查推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\left\{\begin{array}{l}{-x-2(x≤-1)}\\{-1(-1<x<1)}\\{x-2(x≥1)}\end{array}\right.$
(1)画出函数f(x)的图象并求f(2)+f(0)+f(-2)的值;
(2)若f(x)=3,求x的值;
(3)若f(x)≥2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图,将函数f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则关于函数g(x):
①函数在区间[$\frac{π}{6}$,$\frac{π}{2}$]上递减;②函数图象关于x=$\frac{π}{4}$对称;③函数在区间[$\frac{π}{6}$,$\frac{2π}{3}$]上值域为[-2,1];④函数图象的一个对称中心为($\frac{π}{4}$,0),以上说法正确的是(  )
A.①③B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z满足z=i(1+z),则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影长为1,则m=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5},M={3,4,5},N={1,2,5},则集合{1,2}可表示为(  )
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∪(∁UN)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.等比数列{an}中,an>0,a3+2a2=a4,则数列{an}的公比为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,直三棱柱ABC-A1B1C1中,AC=BC,四边形ABB1A1是边长为1的正方形,若E,F分别是CB1,BA1的中点.
(1)求证:EF∥平面ABC;
(2)若AC⊥CB1,求几何体BCA1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-a(x-1)(其中a>0,e是自然对数的底数).
(Ⅰ)若关于x的方程f(x)=$\frac{1}{2}$x2-$\frac{1}{a}$x+a有唯一实根,求(1+lna)a2的值;
(Ⅱ)若过原点作曲线y=f(x)的切线l与直线y=-ex+1垂直,证明:$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$;
(Ⅲ)设g(x)=f(x+1)+ex,当x≥0时,g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案