精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x|x|-mx+1有三个零点,则实数m的取值范围是(  )
A.(0,2)B.(2,+∞)C.(-∞,-2)D.[2,+∞)

分析 f(x)=x|x|-mx+1得x|x|+1=mx利用参数分离法得m=|x|+$\frac{1}{x}$,构造函数g(x)=|x|+$\frac{1}{x}$,转化为两个函数的交点个数问题进行求解即可.

解答 解:由f(x)=x|x|-mx+1得x|x|+1=mx,
当x=0时,方程不成立,
即x≠0,
则方程等价为m=|x|+$\frac{1}{x}$
设g(x)=|x|+$\frac{1}{x}$,
当x<0时,g(x)=-x+$\frac{1}{x}$为减函数,
当x>0时,g(x)=x+$\frac{1}{x}$,
则g(x)在(0,1)上为减函数,则(1,+∞)上为增函数,
即当x=1时,函数取得极小值同时也是最小值g(1)=1+1=2,
作出函数g(x)的图象如图:
要使f(x)=x|x|-mx+1有三个零点,
则等价为m=|x|+$\frac{1}{x}$有三个不同的根,
即y=m与g(x)有三个不同的交点,则由图象知m>2,
故实数m的取值范围是(2,+∞),
故选:B.

点评 本题主要考查函数与方程的应用,利用参数分离法以及数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知点A(2,0),B(0,-1),点P是圆x2+(y-1)2=1上的任意一点,则△PAB面积的最大值为(  )
A.2B.$4+\sqrt{5}$C.$1+\frac{{\sqrt{5}}}{2}$D.$2+\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.棱长为1的正四面体的外接球的半径为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{3}}}{4}$C.1D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知y=f(x)是定义在[-6,6]上的奇函数,它在[0,3]上是一次函数,在[3,6]上是二次函数,当x∈[3,6]时,f(x)≤f(5)=3,又f(6)=2.
(1)求y=f(x)的解析式;
(2)若f(x)-a2-4a≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x}-1,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$(a>0,a≠1),把函数g(x)=f(x)-x的零点按照从小到大的顺序排成一个数列{an},则a2016的值为(  )
A.1008B.2015C.2016D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-lnx]=1,若函数y=x(f(x)-2)+b有零点,则实数b的取值范围是(  )
A.(0,1)B.(-∞,1]C.(2,3)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义运算:x▽y=$\left\{\begin{array}{l}{x(xy≥0)}\\{y(xy<0)}\end{array}\right.$,例如:3▽4=3,(-2)▽4=4,则函数f(x)=x2▽(2x-x2)的最大值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}-a-5(x≤0)}\\{3{x}^{2}-(a+3)x+a(x>0)}\end{array}\right.$.
(1)设a是一个小于2的确定正数,若存在实数k,使得f(x)=k有且仅有三个不相等的实根,求k的取值范围.
(2)若a∈[-2,0],f(x)=k的三个实根分别为x1,x2,x3,求证:-$\frac{1}{3}$<x1+x2+x3<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C的方程为x2=2py(p>0),过点M作抛物线C的两条切线,切点分别为A,B(A右B左).
(1)若点M的坐标为(1,-$\frac{3}{2}$),一个切点B的横坐标为-1,求抛物线C的方程;
(2)若点M的坐标为(a,-2p)(a为常数),设直线AM,BM的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

同步练习册答案