精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}-a-5(x≤0)}\\{3{x}^{2}-(a+3)x+a(x>0)}\end{array}\right.$.
(1)设a是一个小于2的确定正数,若存在实数k,使得f(x)=k有且仅有三个不相等的实根,求k的取值范围.
(2)若a∈[-2,0],f(x)=k的三个实根分别为x1,x2,x3,求证:-$\frac{1}{3}$<x1+x2+x3<1.

分析 (1)题意可得x≤0时,有一个非正根,又3x2-(a+3)x+a=k有两个不等的正根,运用韦达定理和判别式大于0,即可得到所求范围;
(2)运用韦达定理和方程的根的求法,可得x1+x2+x3=$\frac{a+3}{3}$-$\sqrt{\frac{a+5+k}{3}}$,再由k的范围和a的范围,结合换元法和二次函数的值域的求法,即可得证.

解答 解:(1)由题意可得x≤0时,有一个非正根,
即有3x2-a-5=k,即为a+5+k≥0,即k≥-a-5;
又3x2-(a+3)x+a=k有两个不等的正根,
即有△>0,即(a+3)2-12(a-k)>0,
且a+5>0,a-k>0,解得-$\frac{1}{12}$(a-3)2<k<a.
综上可得,-$\frac{1}{12}$(a-3)2<k<a;
(2)证明:由题意可得x≤0时,有一个非正根x1
3x2-(a+3)x+a=k有两个不等的正根x2,x3
即有x2+x3=$\frac{a+3}{3}$,
由x1=-$\sqrt{\frac{a+5+k}{3}}$,
即有x1+x2+x3=$\frac{a+3}{3}$-$\sqrt{\frac{a+5+k}{3}}$,
由k<a可得x1+x2+x3>$\frac{a+3}{3}$-$\sqrt{\frac{2a+5}{3}}$,
设$\sqrt{\frac{2a+5}{3}}$=t($\frac{\sqrt{3}}{3}$≤t≤$\frac{\sqrt{15}}{3}$),
可得a=$\frac{3{t}^{2}-5}{2}$,可得$\frac{a+3}{3}$-$\sqrt{\frac{2a+5}{3}}$=$\frac{1}{6}$(3t2-6t+1)
=$\frac{1}{2}$(t-1)2-$\frac{1}{3}$≥-$\frac{1}{3}$,
即有x1+x2+x3>-$\frac{1}{3}$;
又a≤0,则x1+x2+x3=$\frac{a+3}{3}$-$\sqrt{\frac{a+5+k}{3}}$<1.
则有-$\frac{1}{3}$<x1+x2+x3<1.

点评 本题考查分段函数的运用,考查二次函数和方程的关系,注意运用韦达定理和换元法,以及二次函数的值域的求法,考查不等式的证明,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若关于x的方程x3-3x-m=0在[0,2]上有根,则实数m的取值范围是(  )
A.[-2,2]B.[0,2]C.[-2,0]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x|x|-mx+1有三个零点,则实数m的取值范围是(  )
A.(0,2)B.(2,+∞)C.(-∞,-2)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列有关命题的说法错误的个数是(  )
①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
②“x=-1”是“x2-5x-6=0”的充分不必要条件
③命题“存在x∈R,使得x2+x-1<0”的否定是:“任意x∈R,均有x2+x-1>0”
④命题“若x=y,则sin x=sin y”的逆否命题为真命题
⑤若“p或q”为真命题,则p、q均为真命题.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求符合下列条件的直线方程.
(1)过点P(3,-2),且与直线4x+y-2=0平行;
(2)过点P(3,-2),且在两轴上的截距互为相反数.
(3)过点P(3,-2),且与两坐标轴围成的三角形面积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的距离最小时点P的坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某市某小学学生的体重平均值知下表:
身高/cm60708090100110
体重/kg6.137.909.9912.1515.0217.50
身高/cm120130140150160170
体重/kg20.0226.8631.1138.8547.2555.05
(1)根据该表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个学校学生体重y(kg)与身高x(cm)的函数关系?结合以下所供参考数据,选择适当两组数据,试写出这个函数模型的解析式.(供选择的函数模型:①y=ax${\;}^{\frac{1}{2}}$+b,②y=a•b2,③y=,a(lgx)+b).
(2)若体重超过相同身高体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该校某一学生的身高为175cm,体重为78kg,他的体重是否正常?
供参考数据:5.98$\frac{1}{90}$≈1.02,8.98${\;}^{\frac{1}{110}}$≈1.02,1.0260≈3.28,1.0270≈4.00,1.02160≈23.77,1.02170≈28.98,1.02175≈31.99.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-4a|x|+2,(a∈R).
(1)若函数f(x)在区间(-4,4)上有四个零点,求实数a的取值范围;
(2)当a=1时,设函数f(x)在[m-1,m+1]上的最大值为g(m),求g(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,则BD1与平面ABCD所成角的大小为30°.

查看答案和解析>>

同步练习册答案