精英家教网 > 高中数学 > 题目详情
16.某市某小学学生的体重平均值知下表:
身高/cm60708090100110
体重/kg6.137.909.9912.1515.0217.50
身高/cm120130140150160170
体重/kg20.0226.8631.1138.8547.2555.05
(1)根据该表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个学校学生体重y(kg)与身高x(cm)的函数关系?结合以下所供参考数据,选择适当两组数据,试写出这个函数模型的解析式.(供选择的函数模型:①y=ax${\;}^{\frac{1}{2}}$+b,②y=a•b2,③y=,a(lgx)+b).
(2)若体重超过相同身高体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该校某一学生的身高为175cm,体重为78kg,他的体重是否正常?
供参考数据:5.98$\frac{1}{90}$≈1.02,8.98${\;}^{\frac{1}{110}}$≈1.02,1.0260≈3.28,1.0270≈4.00,1.02160≈23.77,1.02170≈28.98,1.02175≈31.99.

分析 (1)根据表中数据画出散点图,观察发现,这些点的连线是一条向上弯曲的曲线,根据这些点的分布情况,可以考虑用y=a•bx这一函数模型来近似刻画这个地区未成年男性体重y与身高x的函数关系.
2)将x=175代入y=2×1.02x得y=2×1.02175,由计算器可算得y≈63.98,即可得出结论.

解答 解:(1)以身高为横坐标,体重为纵坐标,画出散点图如图所示,根据点的分布情况,可考虑以y=a•bx作为刻画这个地区未成年男性的体重与身高关系的函数模型.不妨取其中的两组数据(70,7.90),(160,47.25)代入y=a•bx,得7.90=a•b70,47.25=a•b160,用计算器可算得a≈2,b≈1.02.
∴得到一个函数模型为y=2×1.02x,作出上述函数的图象(图略)之后.可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系
(2)将x=175代入y=2×1.02x得y=2×1.02175
由计算器可算得y≈63.98,
由于78÷63.98≈1.22>1.2,所以,这个男性体型偏胖.

点评 本题的解题过程,体现了根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.棱长为1的正四面体的外接球的半径为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{3}}}{4}$C.1D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义运算:x▽y=$\left\{\begin{array}{l}{x(xy≥0)}\\{y(xy<0)}\end{array}\right.$,例如:3▽4=3,(-2)▽4=4,则函数f(x)=x2▽(2x-x2)的最大值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}-a-5(x≤0)}\\{3{x}^{2}-(a+3)x+a(x>0)}\end{array}\right.$.
(1)设a是一个小于2的确定正数,若存在实数k,使得f(x)=k有且仅有三个不相等的实根,求k的取值范围.
(2)若a∈[-2,0],f(x)=k的三个实根分别为x1,x2,x3,求证:-$\frac{1}{3}$<x1+x2+x3<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax+$\frac{1}{x+b}$(a,b∈Z)在点(2,f(2))处的切线方程为y=3.
(1)求f(x)的解析式;
(2)求曲线y=f(x)在点(3,f(3))处的切线与直线x=1和直线y=x所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.圆C的圆心C在x轴上,圆C经过抛物线D:y2=16x的焦点且与D相切,则C的半径是2或16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=$\sqrt{3tanx+\sqrt{3}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C的方程为x2=2py(p>0),过点M作抛物线C的两条切线,切点分别为A,B(A右B左).
(1)若点M的坐标为(1,-$\frac{3}{2}$),一个切点B的横坐标为-1,求抛物线C的方程;
(2)若点M的坐标为(a,-2p)(a为常数),设直线AM,BM的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某三棱锥的三视图如图所示,则该几何体的体积为$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案