精英家教网 > 高中数学 > 题目详情
已知二次函数,且不等式的解集为.
(1)方程有两个相等的实根,求的解析式;
(2)的最小值不大于,求实数的取值范围;
(3)如何取值时,函数存在零点,并求出零点.
(1);(2)实数的取值范围是;(3)详见解析.

试题分析:(1)根据不等式的解集为得到为方程的实根,结合韦达定理确定之间的等量关系以及这一条件,然后利用有两个相等的实根得到,从而求出的值,最终得到函数的解析式;(2)在的条件下,利用二次函数的最值公式求二次函数的最小值,然后利用已知条件列有关参数的不等式,进而求解实数;(3)先求出函数的解析式,对首项系数为零与不为零进行两种情况的分类讨论,在首项系数为零的前提下,直接将代入函数解析式,求处对应的零点;在首项系数不为零的前提下,求出
的符号进行三中情况讨论,从而确定函数的零点个数,并求出相应的零点.
试题解析:(1)由于不等式的解集为
即不等式的解集为
为方程的两根,且
由韦达定理得
由于方程有两个相等的实根,即方程有两个相等的实根,

由于,解得
所以
(2)由题意知,,由于,则有
解得,由于,所以,即实数的取值范围是
(3)(※)
①当时,方程为,方程有唯一实根
即函数有唯一零点
②当时,
方程(※)有一解,令
,即
(i)当时,(负根舍去)),
函数有唯一零点
(ii)当时,的两根都是正数,
所以当时,
函数有唯一零点
(iii)当时,
③方程(※)有二解
(i)若时,
(负根舍去)),函数有两个零点,

(ii)当时,的两根都是正数,
时,
(i)函数数有两个零点
(ii)当时,恒成立,
所以大于的任意实数,函数有两个零点
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(Ⅰ)求的解析式;
(Ⅱ)设是曲线上除原点外的任意一点,过的中点且垂直于轴的直线交曲线于点,试问:是否存在这样的点,使得曲线在点处的切线与平行?若存在,求出点的坐标;若不存在,说明理由;
(Ⅲ)设函数,若对于任意,总存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知函数,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2
(Ⅰ)指出函数f(x)的单调区间;
(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2﹣x1≥1;
(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若存在正数,使成立,则实数的取值范围是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数是周期为的偶函数,当时,,如果直线与曲线恰有两个交点,则实数的值是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的函数对任意的都满足,当 时,,若函数至少6个零点,则取值范围是(      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

渔场中鱼群的最大养殖量是m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。已知鱼群的年增长量y吨和实际养殖量x吨与空闲率乘积成正比,比例系数为k(k>0).
写出y关于x的函数关系式,指出这个函数的定义域;
求鱼群年增长量的最大值;
当鱼群的年增长量达到最大值时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是实数集上的偶函数,且在区间上是增函数,则的大小关系是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知函数为有理数且),求函数的最小值;
(2)①试用(1)的结果证明命题:设为有理数且,若时,则
②请将命题推广到一般形式,并证明你的结论;
注:当为正有理数时,有求导公式

查看答案和解析>>

同步练习册答案