精英家教网 > 高中数学 > 题目详情
已知向量
a
=(
2
cos(α+β),
2
sin(α+β))
b
=(-sinβ,cosβ)
,若向量
a
b
的夹角为
6
,且α∈(
2
,2π)
,求cos(2α+
π
4
)
的值.
分析:利用两个向量的夹角公式及α的范围求出α,可求cos2α和sin2α,利用 两角和的余弦公式求出cos(2α+
π
4
)
  的值.
解答:解:∵|
a
|=
2
,|
b
|=1,cos
6
=-
3
2
=
a
b
|
a
|•|
b
|
=
-
2
cos(α+β)sinβ+
2
sin(α+β)cosβ
2
×1

=sinα,∴sinα=-
3
2
.又α∈(
2
,2π)
,∴α=
3
. cos2α=2cos2α-1=-
1
2

sin2α=2sinα cosα=-
3
2

cos(2α+
π
4
)
=cos2αcos
π
4
-sin2αsin
π
4
=-
1
2
×
2
2
+
3
2
×
2
2
=
6
-
2
4
点评:本题考查两个向量的数量积公式,两角和差的余弦公式的应用,求出α 值是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ)
,若向量
a
b
的夹角为60°,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosθ,2sinθ)
θ∈(
π
2
,π),
b
=(0,-1)
,则向量
a
b
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosθ,1),
b
=(sinθ+cosθ,1),- 
π
2
<θ<
π
2

(I)若
a
b
,求θ的值
(II)设f(θ)=
a
b
,求函数f(θ)的最大值及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosωx,1),
b
=(sinωx+cosωx,-1)
,(ω∈R,ω>0),设函数f(x)=
a
b
(x∈R)
,若f(x)的最小正周期为
π
2

(1)求ω的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)已知向量
a
=(2cos,2sinx)
,向量
b
=(
3
cosx,-cosx)
,函数f(x)=
a
b
-
3

(1)求函数f(x)(2)的最小正周期;
(3)求函数f(x)(4)的单调递增区间;
(5)求函数f(x)(6)在区间[
π
12
12
]
(7)上的值域.

查看答案和解析>>

同步练习册答案