精英家教网 > 高中数学 > 题目详情

已知函数h(x)=x2,φ(x)=2elnx(其中e为自然对数)
(1)求F(x)=h (x)-φ(x) 的极值.
(2)设G(x)=h(x)-φ′(x)•数学公式(常数a>0),当x>1时,求函数G(x)的单调区间,并在极值存在处求极值.

解:(1)∵F(x)=x2-2elnx(x>0)
∴F′(x)=2x-2e=
当0<x<时,F′(x)<0,此时F(x)递减,
当x>时,F′(x)>0,此时F(x)递增
当x=时,F(x)取极小值为0 …(6分)
(2)可得G(x)=x2+=x2+
G′(x)=2x-=,…(9分)
当0<x<时,G(x)递减,当x>时,G(x)递增.
由于x>1,
≤1时,即0<a≤2,G(x)在(1,+∞)递增,无极值.
>1时,即a>2,G(x)在(1,)递减,在(,+∞)递增.
所以x=处有极小值,极小值为…(12分).
分析:(1)先确定函数的定义域然后求出函数的导涵数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数的单调区间,然后根据极值的定义进行判定极值即可.
(2)由题设条件知G(x)=x2+=x2+,故G′(x)=.令G′(x)=0,得x=,由此能求出F(x)的单调区间与极值.
点评:本题主要考查了利用导数研究函数的极值,以及函数单调区间等有关基础知识,考查运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=bx,g(x)=ax2+1,h(x)=ln(1+x2).(a,b∈R)
(1)若M={x|f(x)+g(x)≥0},-1∈M,2∈M,z=3a-b,求z的取值范围;
(2)设F(x)=f(x)+h(x),且b≤0,试讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丰台区一模)已知函数f(x)=
1
x+a
,g(x)=bx2+3x.
(Ⅰ)若曲线h(x)=f(x)-g(x)在点(1,0)处的切线斜率为0,求a,b的值;
(Ⅱ)当a∈[3,+∞),且ab=8时,求函数φ(x)=
g(x)
f(x)
的单调区间,并求函数在区间[-2,-1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8,若max{p,q}表示p,q中较大者,min{p,q}表示p,q中的较小者,设G(x)=max{f(x),g(x)},H(x)=min{f(x),g(x)},记G(x)的最小值为A,H(x)的最大值为B,则A-B=
 

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案