精英家教网 > 高中数学 > 题目详情
若抛物线y2=2px上恒有关于直线x+y-1=0对称的两点A,B,则p的取值范围是( )
A.(-,0)
B.(0,
C.(0,
D.(-∞,0)∪(,+∞)
【答案】分析:设出A,B两点的坐标,因为A,B在抛物线上,把两点的坐标代入抛物线方程,作差后求出AB中点的纵坐标,又AB的中点在直线x+y-1=0上,代入后求其横坐标,然后由AB中点在抛物线内部列不等式求得实数p的取值范围.
解答:解:设A(x1,y1),B(x2,y2),
因为点A和B在抛物线上,所以有

①-②得,
整理得
因为A,B关于直线x+y-1=0对称,所以kAB=1,即
所以y1+y2=2p.
设AB的中点为M(x,y),则
又M在直线x+y-1=0上,所以x=1-y=1-p.
则M(1-p,p).
因为M在抛物线内部,所以
即p2-2p(1-p)<0,解得0<p<
所以p的取值范围是().
故选C.
点评:本题考查了直线与圆锥曲线的位置关系,考查了点差法,是解决与弦中点有关问题的常用方法,解答的关键是由AB中点在抛物线内部得到关于p的不等式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若抛物线y2=2px(p>0)的准线通过双曲线
x2
7
-
y2
2
=1
的一个焦点,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与椭圆
x2
12
+
y2
3
=1
的右焦点重合,则p的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px(p>0)上有一点M,其横坐标为8,它到焦点的距离为9,
(1)求焦点F的坐标
(2)并求直线MF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点为F1(-1,0)、F2(1,0),点P(-1,
2
2
)
在椭圆上.
(1)求椭圆C的方程;
(2)若抛物线y2=2px(p>0)与椭圆C相交于点M、N,当△OMN(O是坐标原点)的面积取得最大值时,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与双曲线
x2
16
-
y2
9
=1
的右焦点重合,则p的值为(  )
A、-10
B、5
C、2
7
D、10

查看答案和解析>>

同步练习册答案