精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,底面为正方形,
平面为棱的中点.

(1)求证:平面平面
(2)求二面角的余弦值.
(3)求点到平面的距离.
(1)要证明面面垂直,根据平面,所以以及得到平面.从而得到证明。
(2)  (3)

试题分析:(1)证明:因为平面,所以. 2分
因为四边形为正方形,所以
所以平面
所以平面平面.  4分 
(2)解:在平面内过作直线
因为平面平面,所以平面
两两垂直,建立如图所示的空间直角坐标系
,则
所以
设平面的法向量为,则有
所以   取,得
易知平面的法向量为
所以
由图可知二面角的平面角是钝角,      
所以二面角的余弦值为.   8分
(3)根据等体积法可知到平面的距离,则可以利用
 ,那么结合底面积和高可知          12分
点评:主要是考查了空间中的面面垂直的判定定理和二面角以及点到面的距离的求解,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,四边形是直角梯形,.

(Ⅰ)求证:平面⊥平面
(Ⅱ)若二面角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面平面. 过点,垂足为,点分别为棱的中点.

求证:(1)平面平面
(2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的所有棱长都为,且平面中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四面体(所有棱长都相等)中,分别是的中点,下面四个结论中不成立的是(  )
A.平面平面B.平面
C.平面平面D.平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体的棱长为1,的中点,为线段上的动点,过点的平面截该正方体所得的截面记为,则下列命题正确的是         (写出所有正确命题的编号)。

①当时,为四边形
②当时,为等腰梯形
③当时,的交点满足
④当时,为六边形
⑤当时,的面积为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是不同的直线,是不同的平面,下列命题中正确的是
A.若m//
B.若m//
C.若m//
D.若m//

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面,下列说法正确的是(  )
A.若,则
B.若
C.
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD
PA=BC=1,PD=AB=,E、F分别为线段PDBC的中点.

(Ⅰ) 求证:CE∥平面PAF
(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案