精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD
PA=BC=1,PD=AB=,E、F分别为线段PDBC的中点.

(Ⅰ) 求证:CE∥平面PAF
(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
(Ⅰ)先证明EC∥HF即可              (Ⅱ)存在

试题分析:(1)取PA中点为H,连结CE、HE、FH,
因为H、E分别为PA、PD的中点,所以HE∥AD,,
因为ABCD是平行四边形,且F为线段BC的中点 , 所以FC∥AD,
所以HE∥FC, 四边形FCEH是平行四边形 ,所以EC∥HF
又因为   
所以CE∥平面PAF.        
(2)因为四边形ABCD为平行四边形且∠ACB=90°,

所以CA⊥AD ,又由平面PAD⊥平面ABCD可得 CA⊥平面PAD , 
所以CA⊥PA , 由PA=AD=1,PD=可知,PA⊥AD,                   
所以可建立如图所示的平面直角坐标系A-xyz, 因为PA=BC=1,AB=所以AC="1" .     
所以.
假设BC上存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°,
设点G的坐标为(1,a,0),    所以
设平面PAG的法向量为
 所以
设平面PCG的法向量为
所以 ,       
因为平面PAG和平面PGC所成二面角的大小为60°,所以
  所以所以
所以线段BC上存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°.
点G即为B点.
点评:本题考查线面平行,考查面面角,考查学生的计算能力,正确作出面面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为正方形,
平面为棱的中点.

(1)求证:平面平面
(2)求二面角的余弦值.
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线上有两个点在平面外,则(   )
A.直线上至少有一个点在平面内
B.直线上有无穷多个点在平面内
C.直线上所有点都在平面外
D.直线上至多有一个点在平面内

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知菱形,其边长为2,绕着顺时针旋转得到的中点.

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F为CD中点.

(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在棱长为2的正方体内(含正方体表面)任取一点,则的概率(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.

(1)求证:平面A1BC⊥平面ABB1A1
(2)若,AB=BC=2,P为AC中点,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:

(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体中,中点.(Ⅰ)证明:;(Ⅱ)求与平面所成角的正弦值;(Ⅲ)在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案