【题目】已知数列{an}的前n项和Sn=4n,数列{bn}满足b1=-3,
bn+1=bn+(2n-3)(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若cn=,求数列{cn}的前n项和Tn.
【答案】(1) 当n=1时an=4, 当 n≥2时,an=3×4n-1. (2) bn=n2-4n(n∈N*).(3)Tn=[4+(3n-13)×4n]/3
【解析】试题分析:(1)利用Sn与an的关系求出数列{an}的通项公式;(2)利用累加法求出数列{bn}的通项公式;(3)利用错位相减法求出数列{cn}的前n项和Tn.
试题解析:
解:(1)∵Sn=4n,∴Sn-1=4n-1(n≥2),
∴an=Sn-Sn-1=4n-4n-1=3×4n-1(n≥2).
当n=1时,3×41-1=3≠S1=a1=4,
∴当n=1时an=4, 当 n≥2时,an=3×4n-1.
(2)∵bn+1=bn+(2n-3),
∴b2-b1=-1,b3-b2=1,b4-b3=3,…,bn-bn-1=2n-5(n≥2).
以上各式相加得
bn-b1=-1+1+3+5+…+(2n-5)=(n-1)(n-3)(n≥2).
∵b1=-3,∴bn=n2-4n(n≥2).
又上式对于n=1也成立,
∴bn=n2-4n(n∈N*).
(3)由题意得当n=1时,cn=-12, 当n≥2时,cn=3(n-4)×4n-1.
①当n=1时, Tn=-12
②当n≥2时,Tn=-12+3×(-2)×41+3×(-1)×42+3×1×43+…+3(2n-3)×4n-1,
∴4Tn=-48+3×(-2)×42+3×(-1)×43+3×1×44+…+3(2n-3)×4n.
相减得-3Tn=12+3×42+3×43+…+3×4n-1-3(2n-3)×4n.
∴Tn=(n-4)×4n-(4+42+43+…+4n-1)=[4+(3n-13)×4n]/3
又上式对于n=1也成立,
∴综上Tn=[4+(3n-13)×4n]/3
科目:高中数学 来源: 题型:
【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有( )
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x , x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+ (a<1)的定义域为B.
(1)求集合A,B;
(2)若BA,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点, 轴正半轴为极轴建立坐标系,直线的极坐标方程为,曲线的参数方程为,( 为参数).
(Ⅰ)求直线的直角坐标方程和曲线的普通方程;
(Ⅱ)曲线交轴于两点,且点, 为直线上的动点,求周长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且 .
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明;
(3)求函数f(x)在区间[﹣5,﹣1]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数在(0, ]上是减函数,在[ ,+∞)上是增函数.
(1)若f(x)=x+ ,函数在(0,a]上的最小值为4,求a的值;
(2)对于(1)中的函数在区间A上的值域是[4,5],求区间长度最大的A(注:区间长度=区间的右端点﹣区间的左断点);
(3)若(1)中函数的定义域是[2,+∞)解不等式f(a2﹣a)≥f(2a+4).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数(),,
(Ⅰ) 试求曲线在点处的切线l与曲线的公共点个数;(Ⅱ) 若函数有两个极值点,求实数a的取值范围.
(附:当,x趋近于0时, 趋向于)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求v关于x的函数表达式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com