精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和Sn=4n,数列{bn}满足b1=-3,

bn1bn+(2n-3)(n∈N*).

(1)求数列{an}的通项公式;

(2)求数列{bn}的通项公式;

(3)cn,求数列{cn}的前n项和Tn.

【答案】(1) n=1an=4, n≥2时,an=3×4n-1. (2) bnn2-4n(n∈N*).(3)Tn=[4+(3n-13)×4n]/3

【解析】试题分析:(1)利用Snan的关系求出数列{an}的通项公式;(2)利用累加法求出数列{bn}的通项公式;(3)利用错位相减法求出数列{cn}的前n项和Tn.

试题解析:

解:(1)∵Sn=4n,∴Sn-1=4n-1(n≥2),

anSnSn-1=4n-4n-1=3×4n-1(n≥2).

n=1时,3×41-1=3≠S1a1=4,

n=1an=4, n≥2时,an=3×4n-1.

(2)∵bn+1bn+(2n-3),

b2b1=-1,b3b2=1,b4b3=3,…,bnbn-1=2n-5(n≥2).

以上各式相加得

bnb1=-1+1+3+5+…+(2n-5)=(n-1)(n-3)(n≥2).

b1=-3,∴bnn2-4n(n≥2).

又上式对于n=1也成立,

bnn2-4n(n∈N*).

(3)由题意得当n=1时,cn=-12, n≥2时,cn=3(n-4)×4n-1.

①当n=1, Tn=-12

②当n≥2时,Tn=-12+3×(-2)×41+3×(-1)×42+3×1×43+…+3(2n-3)×4n-1

∴4Tn=-48+3×(-2)×42+3×(-1)×43+3×1×44+…+3(2n-3)×4n.

相减得-3Tn=12+3×42+3×43+…+3×4n-1-3(2n-3)×4n.

Tn=(n-4)×4n-(4+42+43+…+4n-1)=[4+(3n-13)×4n]/3

又上式对于n=1也成立,

∴综上Tn=[4+(3n-13)×4n]/3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x , x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+ (a<1)的定义域为B.
(1)求集合A,B;
(2)若BA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点, 轴正半轴为极轴建立坐标系,直线的极坐标方程为,曲线的参数方程为,( 为参数).

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

(Ⅱ)曲线轴于两点,且点 为直线上的动点,求周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明;
(3)求函数f(x)在区间[﹣5,﹣1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数在(0, ]上是减函数,在[ ,+∞)上是增函数.
(1)若f(x)=x+ ,函数在(0,a]上的最小值为4,求a的值;
(2)对于(1)中的函数在区间A上的值域是[4,5],求区间长度最大的A(注:区间长度=区间的右端点﹣区间的左断点);
(3)若(1)中函数的定义域是[2,+∞)解不等式f(a2﹣a)≥f(2a+4).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中表示同一函数的是(
A.
B. ,g(x)=x+1
C.f(x)=|x|,
D. ,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),

(Ⅰ) 试求曲线在点处的切线l与曲线的公共点个数;(Ⅱ) 若函数有两个极值点,求实数a的取值范围.

(附:当x趋近于0时, 趋向于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求v关于x的函数表达式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

同步练习册答案