精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤1)}\\{2x-3(x>1)}\\{\;}\end{array}\right.$
(1)做出函数的图象;
(2)求f[f(-2)];
(3)若f(a)=5,求a的值.

分析 (1)分段作出函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤1)}\\{2x-3(x>1)}\\{\;}\end{array}\right.$ 的图象即可,
(2)先求f(-2)=(-2)2+1=5,从而可求得f[f(-2)]=f(5)=10-3=7;
(3)由(2)知a=-2是方程f(a)=5的解,再求a>1时的即可.

解答 解:(1)作函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤1)}\\{2x-3(x>1)}\\{\;}\end{array}\right.$ 的图象如下,

(2)f(-2)=(-2)2+1=5,
f[f(-2)]=f(5)=10-3=7;
(3)由(2)知,当a≤1时,a=-2是方程f(a)=5的解,
当a>1时,f(a)=2a-3=5,解得,a=4;
故a=-2或a=4.

点评 本题考查了分段函数的应用及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.直线l过点P($\frac{4}{3}$,2)
(1)若在坐标轴上截距绝对值相等,求直线1的方程.
(2)当与x轴、y轴的正方向分别交于A、B两点,△A0B的面积为6时.求直线1的方程.
(3)当与x轴、y轴的正方向分别交于A、B两点.|PA|•|PB|取最小时,求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,内角A,B,C所对的边分别为a,b,c,若c=1,a=$\sqrt{3}$,A=$\frac{2π}{3}$,则b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax2+bx+1(a,b为常数)
(1)若f(-1)=0,且f(x)最小值为0,求f(x)的解析式;
(2)在(1)的条件下,若g(x)=f(x)-kx在[-2,2]上单调函数,求实数k的取值范围;
(3)设F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$,已知a>0,且f(x )为偶函数,当mn<0,m+n>0时,证明:F(m)+F(n)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l与圆C:x2+y2+4x-2y+k=0的两交点A、B关于直线m:ax+y-3=0对称,且△ABC为面积等于2的直角三角形.
(1)求实数a的值.
(2)求直线1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2+mx-1,且f(-1)=-3,则函数f(x)在区间[2,3]上的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆C:x2+y2-4x=0,l的方程为mx-3m+y=0,则(  )
A.l与C相交B.l与C相切
C.l与C相离D.以上三个选项均有

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.方程x3-2=0的根所在的区间是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-x2-ax+3在区间(-∞,-1]上是增函数.
(1)求a的取值范围;
(2)证明:f(x)在区间(-∞,-$\frac{a}{2}$)上为增函数.

查看答案和解析>>

同步练习册答案