精英家教网 > 高中数学 > 题目详情
已知a为实数f(x)=(x2-4)(x-a),
(1)求导函数f′(x);
(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;
(3)若f(x)在(-∞,-2]和[2,+∞)上都是递增的,求a的取值范围。
解:(1)由原式得f(x)=x3-ax2-4x+4a,
∴f′(x)=3x2-2ax-4;
(2)由f′(-1)=0得,此时有f(x)=(x2-4),f′(x)=3x2-x-4,
由f′(x)=0得或x=-1,
,f(-2)=0,f(2)=0,
所以f(x)在[-2,2]上的最大值为,最小值为
(3)f′(x)=3x2-2ax-4的图象为开口向上且过点(0,-4)的抛物线,
由条件得f′(-2)≥0,f′(2)≥0,即
∴-2≤a≤2,
所以a的取值范围为[-2,2]。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•龙岩二模)已知a为实数,x=1是函数f(x)=
1
2
x2-6x+alnx
的一个极值点.
(Ⅰ)求a的值;
(Ⅱ)若函数f(x)在区间(2m-1,m+1)上单调递减,求实数m的取值范围;
(Ⅲ)设函数g(x)=x+
1
x
,对于任意x≠0和x1,x2∈[1,5],有不等式|λg(x)|-5ln5≥|f(x1)-f(x2)|恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,f(x)=(x2-4)(x-a).

(1)求导数f′(x);

(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;

(3)若f(x)在(-∞,-2]和[2,+∞)上都是递增的,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,f(x)=(x2-4)(x-a).

(1)求导数f′(x);

(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,f(x)=(x2-4)(x-a).

(1)求导数f′(x);

(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;

(3)若f(x)在(-∞,-2]和[2,+∞)上都是递增的,求a的取值范围.

查看答案和解析>>

同步练习册答案