精英家教网 > 高中数学 > 题目详情
18.已知$P(0,2\sqrt{2})$,抛物线y2=2px(p>0)的焦点为F,线段PF与抛物线交于点M,过M作抛物线的准线的垂线,垂足为Q,若∠PQF=90°,则p=2.

分析 利用抛物线的定义,结合∠PQF=90°,可得M为线段PF的中点,求出M的坐标,代入抛物线y2=2px(p>0),即可求出p的值.

解答 解:由抛物线的定义可得MF=MQ,F($\frac{p}{2}$,0),
又∠PQF=90°,故M为线段PF的中点,
∴M($\frac{p}{4}$,$\sqrt{2}$)代入抛物线y2=2px(p>0)得,2=2p×$\frac{p}{4}$,
∴p=2,
故答案为2.

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断M为线段PF的中点是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届河北沧州市高三9月联考数学(理)试卷(解析版) 题型:填空题

中,分别是角的对边,且,则________

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ2cos2θ=1.
(1)求曲线C的普通方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆G的离心率为$\frac{{\sqrt{2}}}{2}$,其短轴的两端点为A(0,1),B(0,-1).
(1)求椭圆G的标准方程;
(2)若C,D是椭圆G上关于y轴对称的两个不同的点,直线BC与x轴交于点M,判断以线段MD为直径的圆是否过点A,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=x-3+log3x的零点所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,圆内接四边形ABCD满足AB∥CD,P在BA的延长线上,且PD2=PA•PB.若BD=2$\sqrt{2}$,PD=CD=2.
(Ⅰ)证明:∠PDA=∠CDB;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用g(n)表示自然数n的所有因数中最大的那个奇数,例:9的因数有1,3,9,g(9)=9,10的因数有1,2,5,10,g(10)=5,那么g(1)+g(2)+g(3)+…+g(22016-1)=(  )
A.$\frac{4}{3}$×42015+$\frac{1}{3}$B.$\frac{4}{3}$×42015-$\frac{1}{3}$C.$\frac{4}{3}$×42016+$\frac{1}{3}$D.$\frac{4}{3}$×42016+$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设Sn是等差数列{an}的前n项和,若$\frac{a_3}{a_6}=\frac{11}{5}$,则$\frac{S_5}{{{S_{11}}}}$=(  )
A.$\frac{11}{5}$B.1C.$\frac{5}{11}$D.${(\frac{11}{5})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC中,AB=1,sinA+sinB=$\sqrt{2}$sinC,S△ABC=$\frac{3}{16}$sinC,则cosC=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案