精英家教网 > 高中数学 > 题目详情
20.若0≤x≤1,0≤y≤2,则z=2y-2x+4的最小值为2.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件0≤x≤1,0≤y≤2,作出可行域如图:

化目标函数为直线方程斜截式得$y=x+\frac{z}{2}-2$,
由图可知,当直线$y=x+\frac{z}{2}-2$过A(1,0)时,直线在y轴上的截距最小,z有最小值为2×0-2×1+4=2.
故答案为:2.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知公差不为零的等差数列{an}与公比为q的等比数列{bn}有相同的首项,同时满足a1,a4,b3成等比,b1,a3,b3成等差,则q2=(  )
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{1}{9}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{2+x}{2-x}$.
(1)比较f(t)与2${\;}^{\frac{2t+2}{t}}$的大小(-$\frac{2}{3}$<t<$\frac{3}{2}$,且t≠0)
(2)设g(x)=$\sqrt{(2-x)f(x)}$-m(x+2)-2,是否存在实数m,使y=g(x)有零点,若存在,求出m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=log3$\frac{m{x}^{2}+8x+n}{{x}^{2}+1}$的定义域为R,值域为[0,2],求$\frac{m-n}{m+n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=1+3secφ}\\{y=4tanφ}\end{array}\right.$(φ为参数),将它化为普通方程,问它是不是双曲线,若是,求出它的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,A(1,0),B(2,0)是两个定点,曲线C的参数方程$\left\{\begin{array}{l}{x={t}^{2}}\\{y=2t}\end{array}\right.$(t为参数).
(1)将曲线C的参数方程化为普通方程;
(2)以A(1,0)为极点,|${\overrightarrow{AB}}$|为长度单位,射线为极轴建立极坐标系,求曲线C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.画出函数y=$\frac{|{x}^{2}-1|}{x-1}$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.画出|$\frac{1}{2}$x-$\frac{\sqrt{3}}{6}$y|+|$\frac{\sqrt{3}}{3}$y|≤1的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\underset{lim}{n→∞}$(2an+3bn)=6,$\underset{lim}{n→∞}$(7an-3bn)=3,求$\underset{lim}{n→∞}$(3an+bn).

查看答案和解析>>

同步练习册答案