精英家教网 > 高中数学 > 题目详情
椭圆的焦点是F1,F2,如果椭圆上一点P满足PF1⊥PF2下面结论正确的是(   )
A.P点有两个B.P点有四个
C.P点不一定存在D.P点一定不存在
D
不妨设椭圆的焦点,设,因为,所以,即,则,所以点在以原点为圆心3为半径的圆上。而椭圆与圆没有交点,所以符合条件的点不存在,故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆的右焦点为,离心率为,则此椭圆的方程为___________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

2008年9月25日下午4点30分,“神舟七号”载人飞船发射升空,其运行的轨道是以地球的中心F为一个焦点的椭圆,若这个椭圆的长轴长为2a,离心率为e,则“神舟七号”飞船到地球中心的最大距离为________ _

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的一动点,且与椭圆长轴两顶点连线的斜率之积为,则椭圆离心率为 (    )
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是椭圆上任意一点,F1、F2是焦点,那么∠F1PF2的最大值是(   )
A.600B.300C.1200D.900

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P是椭圆上的点,F1、F2是两个焦点,则|PF1|·|PF2|的最大值与最小值之差是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上关于原点对称的两点,是椭圆上任意一点且直线的斜率分别为,则的最小值为,则椭圆的离心率为(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若过椭圆=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是______

查看答案和解析>>

同步练习册答案