精英家教网 > 高中数学 > 题目详情
(本题满分12分)设分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
解:(1)易知   所以,设,则 
                           -------------- 3分
因为,故当,即点为椭圆短轴端点时,有最小值  ,
,即点为椭圆长轴端点时,有最大值. -------------- 5分
(2)显然直线不满足题设条件,可设直线,将代入,消去,整理得:
,                  -------------- 7分

得:,                             -------------- 8分
 


,即 ∴       -------------- 11分
故由①、②得             -------------- 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点, 若存在点P为椭圆上一点, 使得 , 则椭圆离心率的取值范围是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设椭圆E:的上焦点是,过点P(3,4)和作直线P交椭圆于A、B两点,已知A().
(1)求椭圆E的方程;
(2)设点C是椭圆E上到直线P距离最远的点,求C点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本小题满分12分)
已知椭圆的长轴长为,且点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆右焦点的直线交椭圆于两点,若以为直径的圆过原点,
求直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是
(1)求椭圆E的方程;
(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点是F1,F2,如果椭圆上一点P满足PF1⊥PF2下面结论正确的是(   )
A.P点有两个B.P点有四个
C.P点不一定存在D.P点一定不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆经过点M(2,1),O为坐标原点,平行于OM的直线ly轴上的截距为mm≠0) 
(1)当 时,判断直线l与椭圆的位置关系;
(2)当时,P为椭圆上的动点,求点P到直线l距离的最小值;
(3)如图,当l交椭圆于A、B两个不同点时,求证:
直线MA、MB与x轴始终围成一个等腰三角形 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为       __

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,第(1)题4分、第(2)题8分、第(3)题6分)
已知二次曲线的方程:
(1)分别求出方程表示椭圆和双曲线的条件;
(2)对于点,是否存在曲线交直线两点,使得?若存在,求出的值;若不存在,说明理由;
(3)已知与直线有公共点,求其中实轴最长的双曲线方程.

查看答案和解析>>

同步练习册答案