精英家教网 > 高中数学 > 题目详情
已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是
(1)求椭圆E的方程;
(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。
(1)根据条件可知椭圆的焦点在x轴,且
故所求方程为  ……………3分
(2)假设存在点M符合题意,设AB:代入得:
  ………………4分
  …………6分
…10分
要使上式与K无关,则有,解得,存在点满足题意。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的一动点,且与椭圆长轴两顶点连线的斜率之积为,则椭圆离心率为 (    )
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本不题满分14分)
已知在平面直角坐标系中,向量,△OFP的面积为,且 
(1)设,求向量的夹角的取值范围;
(2)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且
取最小值时,求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P是椭圆上任意一点,F1、F2是焦点,那么∠F1PF2的最大值是(   )
A.600B.300C.1200D.900

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知椭圆的两焦点为F1),F2(1,0),直线x = 4是椭圆的一条准线.
(1)求椭圆方程;
(2)设点P在椭圆上,且,求cos∠F1PF2的值;
(3)设P是椭圆内一点,在椭圆上求一点Q,使得最小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:①椭圆的离心率,长轴长为;②抛物线的准线方程为③双曲线的渐近线方程为;④方程的两根可分别作为椭圆和双曲线的离心率.
其中所有正确命题的序号是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆的左右焦点,若P是该椭圆上的一个动点则最大值和最小值分别是            (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P是椭圆上的点,F1、F2是两个焦点,则|PF1|·|PF2|的最大值与最小值之差是______.

查看答案和解析>>

同步练习册答案