精英家教网 > 高中数学 > 题目详情
分别是椭圆的左右焦点,若P是该椭圆上的一个动点则最大值和最小值分别是            (   )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数的最小值为(   )
A.   B.   C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知椭圆经过点为坐标原点,平行于的直线轴上的截距为.
(1)当时,判断直线与椭圆的位置关系(写出结论,不需证明);
(2)当时,为椭圆上的动点,求点到直线   距离的最小值;
(3)如图,当交椭圆于两个不同点时,求证:直线轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是
(1)求椭圆E的方程;
(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆+=1的左、右焦点分别为F1、F2,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则点P到x轴的距离为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点FA分别是椭圆的左焦点、右顶点,B(0,b)满足
,则椭圆的离心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,第(1)题4分、第(2)题8分、第(3)题6分)
已知二次曲线的方程:
(1)分别求出方程表示椭圆和双曲线的条件;
(2)对于点,是否存在曲线交直线两点,使得?若存在,求出的值;若不存在,说明理由;
(3)已知与直线有公共点,求其中实轴最长的双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点,一个焦点为,且长轴长是短轴长的2倍,则该椭圆的标准方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别为椭圆的焦点,点在椭圆上,若;则点的坐标是 _________

查看答案和解析>>

同步练习册答案