精英家教网 > 高中数学 > 题目详情

【题目】某班数学兴趣小组对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.

1)自变量x的取值范围是全体实数,xy的几组对应值列表如下:

x

3

2

1

0

1

2

3

y

2

m

2

1

2

1

2

其中,m  

2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.

3)观察函数图象,写出两条函数的性质.

4)进一步探究函数图象发现:

①方程﹣x2+2|x|+10  个实数根;

②关于x的方程﹣x2+2|x|+1a4个实数根时,a的取值范围是  

【答案】11;(2)答案见解析;(3)①函数的最大值是2,没有最小值;②当x1时,yx的增大而减小;(答案不唯一)(4)①2;②1a2

【解析】

1)根据对称性或直接代数计算即可得答案;

2)描点画出图形即可;

3)可写函数的最大值和最小值问题,也可确定一个范围写增减性问题(答案不唯一);

4)①当y=0时,图象与x轴的交点有两个,则方程有2个实数根;②直线y=a与图象有4个交点,即表示方程有4个实根,据此结合图象确定a的范围即可.

1)当时,,所以m=1

故答案为:1;

2)根据表格数据,描点画图如下:

3)根据图象可知,函数具有如下性质:①函数的最大值是2,没有最小值;②当x1时,yx的增大而减小;(答案不唯一)

4)①由图象可知:函数图象与x轴有两个交点,

所以方程﹣x2+2|x|+102个实数根,

故答案为:2

②方程﹣x2+2|x|+1a4个实数根时,

即表示ya与图象有4个交点,

故由图象可知,a的取值范围是:1a2

故答案为:1a2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A(2,2,2),B(2,0,0),C(0,2,-2).

(1)写出直线BC的一个方向向量;

(2)设平面α经过点A,且BCα的法向量,M(xyz)是平面α内的任意一点,试写出xyz满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆系方程 ( ), 是椭圆的焦点, 是椭圆上一点,且.

(1)求的方程;

(2)为椭圆上任意一点,过且与椭圆相切的直线与椭圆交于 两点,点关于原点的对称点为,求证: 的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:

甲:1.701.651.681.691.721.731.681.67

乙:1.601.731.721.611.621.711.701.75.

经预测,跳高1.65m就很可能获得冠军.该校为了获取冠军,可能选哪位选手参赛?若预测跳高1.70m方可获得冠军呢?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若将频率视为概率,现从全市高二学生中随机查看5名学生的期中考试语文成绩,记成绩优秀(不低于80分)的学生人数为,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是20个国家和地区的二氧化碳排放总量及人均二氧化碳排放量.

国家和地区

排放总量/千吨

人均排放量/

国家和地区

排放总量/千吨

人均排放量/

A

10330000

7.4

K

480000

2.0

B

5300000

16.6

L

480000

7.5

C

3740000

7.3

M

470000

3.9

D

2070000

1.7

N

410000

5.3

E

1800000

12.6

O

390000

16.9

F

1360000

10.7

P

390000

6.4

G

840000

10.2

Q

370000

5.7

H

630000

12.7

R

330000

6.2

I

550000

15.7

S

320000

6.2

J

510000

2.6

T

490000

16.6

1)这20个国家和地区人均二氧化碳排放量的中位数是多少?

2)针对这20个国家和地区,请你找出二氧化碳排放总量较少的前15%的国家和地区.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的各棱长均相等, 底面EF分别为棱的中点.

1)过作平面α,使得直线BE//平面α,若平面α与直线交于点H,指出点H所在的位置,并说明理由;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(1)写出直线l普通方程和曲线C的直角坐标方程;

(2)过点且与直线平行的直线 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求证:平面ABCD;

(II)求证:平面ACF⊥平面BDF.

查看答案和解析>>

同步练习册答案