精英家教网 > 高中数学 > 题目详情
已知f(x)=loga
1+x1-x
 (a>1)
(1)求f(x)的定义域.
(2)判断f(x)与f(-x)的关系,并就此说明函数f(x)图象的特点.
(3)求使f(x)>0的点的x的取值范围.
分析:(1)由题意得
1+x
1-x
>0
所以x∈(-1,1)
(2)将f(-x)化简整理,寻求与f(x)的关系,结合函数性质的研究方法,得出函数f(x)图象的特点.
(3)根据对数函数的单调性,要求真数大于1,解不等式即可.
解答:解:(1)要使函数有意义,须
1+x
1-x
>0

即(1+x)(1-x)>0,解得-1<x<1
所以定义域为x∈(-1,1).
(2)f(-x)=loga
1-x
1+x
=loga(
1+x
1-x
)-1=-loga
1-x
1+x
=-f(x)

f(x)为奇函数
其图象关于原点对称.
(3)由f(x)>0与a>1得出
1+x
1-x
>1
 
移项得
1+x
1-x
-1>0

整理得出
2x
1-x
>0

即2x(1-x)>0
 解得x∈(0,1)
点评:本题考查复合对数函数的图象与性质,分式不等式的解法、对数的基本运算.考查转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log(2x+1)在(-,0)内恒有f(x)>0,则a的取值范围是

A.a>1

B.0<a<1

C.a<-1或a>1

D.-a<-1或1<a

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中文科数学试卷(解析版) 题型:解答题

已知f(x)=log  (a>0且a≠1).

(1)求f(x)的 定义域;

(2)判断f(x)的奇偶性并予以证明.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log a (a>0, 且a≠1)

求f(x)的定义域

求使 f(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案