【题目】已知△ABC的三个内角A、B、C所对的边分别为a,b,c,且4sin2 ﹣cos2A=
(1)求角A的大小,
(2)若a= ,cosB= ,求△ABC的面积.
【答案】
(1)解:∵sin2 = [1﹣cos(B+C)]= (1+cosA),cos2A=2cos2A﹣1
∴由4sin2 ﹣cos2A= ,得(2cosA﹣1)2=0,解之得cosA=
∵A是三角形的内角,∴A=60°
(2)解:由cosB= ,得sinA= =
∵ ,∴b= =
又∵sinC=sin(A+B)=sinAcosB+cosAsinB=
∴△ABC的面积为S= absinC= × =
【解析】(1)利用三角恒等变换公式和诱导公式,化简已知等式得到(2cosA﹣1)2=0,解之得cosA= ,结合A是三角形的内角可得A=60°;(2)算出sinA= = ,结合正弦定理算出b= = .利用诱导公式与两角和的正弦公式算出sinC=sin(A+B)= ,最后利用正弦定理的面积公式即可算出△ABC的面积.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:.
科目:高中数学 来源: 题型:
【题目】定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(﹣a)+f(a)=0,若x、y满足不等式f(x2﹣2x)+f(2y﹣y2)≤0,则当1≤x≤4时,x﹣3y的最大值为( )
A.10
B.8
C.6
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱 中,侧面和侧面都是矩形, 是边长为的正三角形, 分别为的中点.
(1)求证: 平面;
(2)求证:平面平面.
(3)若平面,求棱的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知美国苹果公司生产某款iPhone手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设苹果公司一年内共生产该款iPhone手机x万只并全部销售完,每万只的销售收入为R(x)万美元,且R(x)=
(1)写出年利润W(万美元)关于年产量x(万只)的函数解析式;
(2)当年产量为多少万只时,苹果公司在该款iPhone手机的生产中所获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示. 是等腰梯形, 米, (在的延长线上, 为锐角). 圆与都相切,且其半径长为米. 是垂直于的一个立柱,则当的值设计为多少时,立柱最矮?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求证:平面ABC1⊥平面A1ACC1;
(2)设D是线段BB1的中点,求三棱锥D﹣ABC1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com