精英家教网 > 高中数学 > 题目详情

【题目】一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示. 是等腰梯形, 米, 的延长线上, 为锐角). 圆都相切,且其半径长为米. 是垂直于的一个立柱,则当的值设计为多少时,立柱最矮?

【答案】时,立柱最矮.

【解析】试题分析:利用题意建立直角坐标系,得到关于的函数: ,求导之后讨论函数的单调性可知时取得最值.

试题解析:

解:方法一:如图所示,以所在直线为轴,以线段

的垂直平分线为轴,建立平面直角坐标系.

因为 ,所以直线的方程为

.

设圆心,由圆与直线相切,

所以.

,则, 设 . 列表如下:

0

极小值

所以当,即时, 取最小值. 答:当时,立柱最矮.

方法二:如图所示,延长交于点,过点

.

中, . 在中, .

所以.

(以下同方法一)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是等差数列的前项和,已知 .

1)求

2若数列求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A、B、C所对的边分别为a,b,c,且4sin2 ﹣cos2A=
(1)求角A的大小,
(2)若a= ,cosB= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,正确的是( )

①两个平面同时垂直第三个平面,则这两个平面可能互相垂直

②方程 表示经过第一、二、三象限的直线

③若一个平面中有4个不共线的点到另一个平面的距离相等,则这两个平面平行

④方程可以表示经过两点的任意直线

A. ②③ B. ①④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .

(1)求椭圆的离心率;

(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线的斜率之积;

(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为,直线的横、纵截距分别为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(m+)(m∈R,且m>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量=( , ﹣1),=(cosA,sinA).若 , 且αcosB+bcosA=csinC,则角A,B的大小分别为(  )
A.,
B.,
C.,
D.,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数(其中为自然对数的底数, ).

(1)当时,求的单调区间;

(2)若仅有一个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在⊙O中,相交于点E的两弦ABCD的中点分别是MN,直线MO与直线CD相交于点F.

证明:(1)∠MEN+∠NOM=180°;

(2)FE·FNFM·FO.

查看答案和解析>>

同步练习册答案