已知中心在原点
的椭圆C:
的一个焦点为F1(0,3),M(x,4)(x>0)为椭圆C上一点,△MOF1的面积为
.
(1) 求椭圆C的方程;
(2) 是否存在平行于OM的直线l,使得直线l与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线l的方程;若不存在,说明理由.
(1)
(2) 符合题意的直线
存在,且所求的直线
的方程为
或
.
【解析】
试题分析:(1) 求椭圆C的方程,根据椭圆
的焦点为
,可得椭圆
的方程为
,利用
椭圆
上一点,利用
的面积为
,可求出
的坐标,将
的坐标代入椭圆
的方程,即可确定椭圆
的方程;(2) 这是探索性命题,可假设存在符合题意的直线l存在,设直线方程代入椭圆方程,消去y,可得一元二次方程,利用韦达定理,结合以线段AB为直径的圆恰好经过原点,得
,利用
即可求得结论.
试题解析:(1) 因为椭圆C的一个焦点为F1(0,3),
所以b2=a2+9.
则椭圆C的方程为
+
=1.
因为x>0,所以
=
×3×x=
,解得x=1.
故点M的坐标为(1,4).
因为M(1,4)在椭圆上,
所以
+
=1,得a4-8a2-9=0,解得a2=9或a2=-1(不合题意,舍去),
则b2=9+9=18,所以椭圆C的方程为
. 6分
(2) 假设存在符合题意的直线l与椭圆C相交于A(x1,y1),B(x2,y2)两点,
其方程为y=4x+m(因为直线OM的斜率k=4).
由
消去y化简得18x2+8mx+m2-18=0.
进而得到x1+x2=-
,x1x2=
.
因为直线l与椭圆C相交于A,B两点,
所以Δ=(8m)2-4×18×(m2-18)>0,
化简得m2<162,解得-9
<m<9
.
因为以线段AB为直径的圆恰好经过原点,所以
=0,
所以x1x2+y1y2=0.
又y1y2=(4x1+m)(4x2+m)=16x1x2+4m(x1+x2)+m2,
x1x2+y1y2=17x1x2+4m(x1+x2)+m2=
-
+m2=0.
解得m=±
.
由于±
∈(-9
,9
),
所以符合题意的直线l存在,且所求的直线l的方程为y=4x+
或y=4x-
. 13分
考点:直线与圆锥曲线的关系;椭圆的标准方程.
科目:高中数学 来源: 题型:
| 2 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| DA |
| DB |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 15 |
A、
| ||||
B、x2+
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com