①④⑤
分析:根据题意画出图形,然后对应选项一一判定即可①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,②若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1或
;不正确.④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积的最大值为
.⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
.
解答:
解:①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.
②若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,不正确.
③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1或
;不正确.
④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
,正确.
⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
,正确.
故答案为:①④⑤.
点评:本题考查棱锥的结构特征,考查学生发现问题解决问题的能力,射影定理的应用等,是中档题.