精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积.
分析:(1)由PA⊥平面ABC,知PA⊥BC,由AC⊥BC,知BC⊥平面PAC,从而得到BC⊥AD.由此能够证明AD⊥平面PBC.
(2)由三视图得BC=4,由(1)知∠ADC=90°,BC⊥平面PAC,由此能求出三棱锥的体积.
解答:.(本小题满分12分)
解:(1)因为PA⊥平面ABC,所以PA⊥BC,
又AC⊥BC,所以BC⊥平面PAC,所以BC⊥AD.
由三视图可得,在△PAC中,PA=AC=4,D为PC中点,所以AD⊥PC,
所以AD⊥平面PBC,
(2)由三视图可得BC=4,
由(1)知∠ADC=90°,BC⊥平面PAC,
又三棱锥D-ABC的体积即为三棱锥B-ADC的体积,
所以,所求三棱锥的体积V=
1
3
×
1
2
×4×
1
2
×4×4=
16
3
点评:本题考查利用几何体的三视图求直线与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案