精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
lim
n→∞
2
n
 
-
x
n
 
2n+
x
n
 
,试求:
(1)f(x)的定义域,并画出图象;
(2)求
lim
x→-2-
f(x)、
lim
x→-2+
f(x),并指出
lim
x→-2 
f(x)是否存在.
分析:(1)讨论当|x|>2,|x|<2,当x=2时和当x=-2时,求出函数的极限即可得到f(x)的定义域,画出图象;
(2)分别求出x→-2-,x→2+时函数的极限,得到两者不相等,所以
lim
x→-2 
f(x)不存在.
解答:解:(1)当|x|>2时,
lim
n→∞
2
n
 
-xn
2n+xn
=
lim
n→∞
(
2
x
)
n
-1
(
2
x
)
n
+1
=-1;
当|x|<2时,
lim
n→∞
2n-xn
2n+xn
=
lim
n→∞
1-(
x
2
)
n
1+(
x
2
)
n
=1;
当x=2时,
lim
n→∞
2n-xn
2n+xn
=0;
当x=-2时,
lim
n→∞
2n-xn
2n+xn
不存在.
∴f(x)=
-1     (x>2或x<-2)
0       (x=2)
1        (-2<x<2).

∴f(x)的定义域为{x|x<-2或x=2或x>2}.如图所示精英家教网
(2)∵
lim
x→-2-
f(x)=-1,
lim
x→-2+
f(x)=1.
lim
x→-2
f(x)不存在.
点评:考查学生会求函数的左极限及右极限并会判断函数极限的存在性.会求不同的取值范围函数的极限.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案