精英家教网 > 高中数学 > 题目详情
已知圆x2+y2-2x+4y-4=0,则圆心P为(  )
A.(-2,4)B.(2,-4)C.(1,-2)D.(-1,2)
由圆x2+y2-2x+4y-4=0,可得(x-1)2+(y+2)2=9.
故圆心P为(1,-2).
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

圆心在轴上,半径为1,且过点(1,2)的圆的方程为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,以O为圆心的圆与直线x-
3
y=4
相切.
(Ⅰ)求圆O的方程;
(Ⅱ)圆O与x轴相交于A,B两点,圆O内的动点P使|PA|,|PO|,|PB|成等比数列,求
PA
PB
的取值范围;
(Ⅲ)已知D,E,F是圆O上任意三点,动点M满足
OM
OD
OE
+(1-2λ)
OF
,λ=R,问点M的轨迹是否一定经过△DEF的重心(重心为三角形三条中线的交点),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,矩形纸片ABCD的长为4,宽为2.AB,AD边分别在x轴、y轴的正半轴上,点A与坐标原点重合.将矩形纸片沿直线折叠,使点A落在边CD上,记为点A',如图所示.
(1)设A'的坐标是(2a,2)(0≤a≤2),写出折痕所在直线的方程;
(2)若折痕经过B时,求折痕所在直线的斜率,并写出以折痕为直径的圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与圆x2+y2-6x+2y+6=0同圆心且经过点(1,-1)的圆的方程是(  )
A.(x-3)2+(y+1)2=8B.(x+3)2+(y+1)2=8
C.(x-3)2+(y+1)2=4D.(x+3)2+(y+1)2=4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1).则圆C的方程为(  )
A.x2+(y-2)2=4B.x2+(y+2)2=4C.(x+3)2+y2=2D.(x-3)2+y2=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于任意实数a,点P(a,2-a)与圆C:x2+y2=2的位置关系的所有可能是(  )
A.都在圆内B.都在圆外
C.在圆上、圆外D.在圆上、圆内、圆外

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:x2+y2-4x-6y+12=0
(1)求过点A(1,5)的圆C的切线方程;
(2)求在两坐标轴上截距之和为0,且截圆C所得弦长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C的方程为x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若m=4,斜率为2的直线l被曲线C截得的弦长为
4
5
5
,求直线l的方程.

查看答案和解析>>

同步练习册答案