精英家教网 > 高中数学 > 题目详情
13.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有(x2-x1)[f(x2)-f(x1)]<0.则(  )
A.f(1)<f(-2)<f(3)B.f(3)<f(1)<f(-2)C.f(一2)<f(1)<f(3)D.f(3)<f(-2)<f(1)

分析 由(x2-x1)[f(x2)-f(x1)]<0和函数单调性的定义判断出函数f(x)在[0,+∞)上单调递减,再由偶函数的关系式将f(-2)转化为f(2),再由自变量的大小判断出三者的大小关系.

解答 解:由题意得,对任意的x1,x2∈[0,+∞)(x1≠x2),(x2-x1)[f(x2)-f(x1)]<0,
∴f(x)在[0,+∞)上单调递减,
∵f(x)是定义在R上的偶函数,∴f(-2)=f(2),
∵0<1<2<3,∴f(1)>f(2)>f(3),
故选:D

点评 本题考查了函数的单调性和奇偶性的综合应用,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.04,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为800,则中间一组(即第五组)的频数为160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{{\sqrt{lg(3-x)}}}$的定义域是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在(0,+∞)的函数.对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,记a=$\frac{f({3}^{0.2})}{{3}^{0.2}}$,b=$\frac{f(0.{3}^{2})}{0.{3}^{2}}$,c=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A,B,是直二面角α-l-β的棱上两点,线段AC?α,线段BD?β,且AC⊥l,BD⊥l,AC=12,AB=4,BD=3,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x,y∈R+,满足xy=$\frac{x-4y}{x+y}$,则y的最大值为$\sqrt{5}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lg$\frac{kx-1}{x-1}$.
(1)求f(x)的定义域;
(2)若f(x)在[2,+∞)上单调增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x>0,y>0,x+$\frac{1}{x}$+$\frac{y}{2}$+$\frac{8}{y}$=10.则2x+y的最大值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求证:函数f(x)=2x+x-5在区间(1,2)有且只有一个零点.

查看答案和解析>>

同步练习册答案