精英家教网 > 高中数学 > 题目详情
已知函数是偶函数,是它的导函数,当时,恒成立,且,则不等式的解集为        

试题分析:令则函数是奇函数,当时,,因此上单调减,从而上单调增,由,解得所求解集为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

函数是定义在上的奇函数,且.
(1)求函数的解析式;
(2)证明函数上是增函数;
(3)解不等式:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数.
⑴当时,函数的图象与函数的图象有公共点,求实数的最大值;
⑵当时,试判断函数的图象与函数的图象的公共点的个数;
⑶函数的图象能否恒在函数的上方?若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)若函数处取得极值,对恒成立,求实数的取值范围;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)若当,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2009′(x)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=(2x+1)3-
2a
x
+3a,若f′(-1)=8,则f(-1)=(  )
A.4B.5C.-2D.-3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若对任意的x∈D,均有f1(x)≤f(x)≤f2(x)成立,则称函数f(x)为函数f1(x)到函数f2(x)在区间D上的“折中函数”.已知函数f(x)=(k-1)x-1,g(x)=0,h(x)=(x+1)ln x,且f(x)是g(x)到h(x)在区间[1,2e]上的“折中函数”,则实数k的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1) 当时,讨论的单调性;
(2)设,当若对任意存在 使求实数的取值范围。

查看答案和解析>>

同步练习册答案