精英家教网 > 高中数学 > 题目详情
函数是定义在上的奇函数,且.
(1)求函数的解析式;
(2)证明函数上是增函数;
(3)解不等式:.
(1)  (2)证明见解析   (3)

试题分析:(1)(由是定义在上的奇函数,利用可求得,再由可求得,即可求得
(2)由(1)可得,即得函数上是增函数;
(3)由,再利用为奇函数,可得,即可求得结果.
试题解析:(1)是定义在上的奇函数,

(2),即

∴函数上是增函数.
(3),又是奇函数,
上是增函数,,解得
即不等式的解集为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln(x+1)+ax2-x,a∈R.
(1)当时,求函数y=f(x)的极值;
(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=
1
2
sin2x+sinx
,则f′(x)是(  )
A.仅有最小值的奇函数
B.仅有最大值的偶函数
C.既有最大值又有最小值的偶函数
D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若对定义在R上的可导函数f(x),恒有(4-x)f(2x)+2xf′(2x)>0,(其中f′(2x)表示函数f(x)的导函数f′(x)在2x的值),则f(x)(  )
A.恒大于等于0B.恒小于0
C.恒大于0D.和0的大小关系不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若连续且不恒等于的零的函数f(x)满足f′(x)=3x2-x(x∈R),试写出一个符合题意的函数f(x)=______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=lnx+tanα(α∈(0,
π
2
))的导函数为f′(x),若使得f′(x0)=f(x0)立的x0<1,则实数α的取值范围为(  )
A.(
π
4
π
2
B.(0,
π
3
C.(
π
6
π
4
D.(0,
π
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数是偶函数,是它的导函数,当时,恒成立,且,则不等式的解集为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为R的函数,且对任意实数x,总有/(x)<3
则不等式<3x-15的解集为(  )
A.(﹣∞,4)
B.(﹣∞,﹣4)
C.(﹣∞,﹣4)∪(4,﹢∞)
D.(4,﹢∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
上的最大值和最小值分别记为,求
恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案