【题目】如图,点分别是圆心在原点,半径为和的圆上的动点.动点从初始位置开始,按逆时针方向以角速度作圆周运动,同时点从初始位置开始,按顺时针方向以角速度作圆周运动.记时刻,点的纵坐标分别为.
(Ⅰ)求时刻,两点间的距离;
(Ⅱ)求关于时间的函数关系式,并求当时,这个函数的值域.
科目:高中数学 来源: 题型:
【题目】在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:
(Ⅰ)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?
(Ⅱ)如果语文和数学两科都特别优秀的共有3人.
(ⅰ)从(Ⅰ)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.
(ⅱ)根据以上数据,完成列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.
语文特别优秀 | 语文不特别优秀 | 合计 | |
数学特别优秀 | |||
数学不特别优秀 | |||
合计 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | |||
女 | |||
合计 |
(1)用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)在上述抽取的人中选人,求恰好有名女性的概率;
(3)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?
下面的临界值表供参考:
参考公式: ,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产甲,乙两种图画纸,计划每种图画纸的生产量不少于8t,已知生产甲种图画纸1t要用芦苇7t、黄麻3t、枫树5t;生产乙种图画纸1t要用芦苇3t、黄麻4t、枫树8 t.现在仓库内有芦苇300t、黄麻150t.枫树200t,试列出满足题意的不等式组.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinxcosx+cos2x-.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)将函数f(x)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)的图象.若关于x的方程g(x)-k=0,在区间[0,]上有实数解,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】校园准备绿化一块直径为的半圆形空地,点在半圆圆弧上,△外的地方种草,△的内接正方形为一水池(,在边上),其余地方种花,若, ,设△的面积为,正方形面积为;
(1)用和表示和;
(2)当固定,变化时,求最小值及此时的角;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:
最低气温(℃) | |||||
天数 | 11 | 25 | 36 | 16 | 2 |
以最低气温位于各区间的频率代替最低气温位于该区间的概率.
求11月份这种电暖气每日需求量(单位:台)的分布列;
若公司销售部以每日销售利润(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com