精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=alog2(|x|+4)+x2+a2-8有唯一的零点,则实数a的值是(  )
A.-4B.2C.±2D.-4或2

分析 根据f(x)是偶函数可知唯一零点比为0,从而得出a,再利用函数图象验证即可.

解答 解:显然f(x)是偶函数,
∵f(x)有唯一一个零点,∴f(0)=0,即a2+2a-8=0,
解得a=2或a=-4.
当a=2时,f(x)=2alog2(|x|+4)+x2-4,
∴f(x)在[0,+∞)上单调递增,符合题意;
当a=-4时,f(x)=-4log2(|x|+4)+x2+8,
作出y=4log2(|x|+4)和y=x2+8的函数图象如图所示:

由图象可知f(x)有三个零点,不符合题意;
综上,a=2.
故选B.

点评 本题考查了函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知点P在函数f(x)=xex的图象上.
(Ⅰ)求曲线y=f(x)在点P(1,f(1))处的切线方程;
(II)求函数y=f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆x2+y2-12x+16=0与直线y=kx交于不同的两点,则实数k的取值范围为(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-$\sqrt{5}$,$\sqrt{5}$)C.(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2^n}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=2log2an-1,求数列$\{\frac{1}{{{b_n}{b_{n+1}}}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的前n项和为Sn,a1=a,当n≥2时,${S}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$,an≠0,n∈N*.
(1)求a的值;
(2)设数列{cn}的前n项和为Tn,且cn=3n-1+a5,求使不等式4Tn>S10成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.
(1)求证:PA⊥平面CMN;
(2)求证:AM∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知函数y=2kx(k>0)与函数y=x2的图象所围成的阴影部分的面积为$\frac{32}{3}$,则实数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.
求证:(1)PA∥平面QBD;
(2)BD⊥AD.

查看答案和解析>>

同步练习册答案