精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.
求证:(1)PA∥平面QBD;
(2)BD⊥AD.

分析 (1)连接OQ,可得PA∥OQ,即可证得PA∥平面QBD.
(2)在平面PAD内过P作PH⊥AD于H,可得PH⊥平面ABCD,即可得PH⊥BD,可得到以BD⊥平面PAD,即BD⊥AD.

解答 解:(1)如图,连接OQ,因为AB∥CD,AB=2 CD,
所以AO=2OC,又PQ=2QC,
所以PA∥OQ,…(3分)
又OQ?平面QBD,PA?平面QBD,
所以PA∥平面QBD.…(6分)
(2)在平面PAD内过P作PH⊥AD于H,因为侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,
PH?平面PAD,所以PH⊥平面ABCD,…(9分)
又BD?平面ABCD,所以PH⊥BD,又PA⊥BD,
且PA和PH是平面PAD内的两条相交直线,所以BD⊥平面PAD,…(12分)
又AD?平面PAD,所以BD⊥AD.…(14分)

点评 本题考查了空间线面平行的判定,线线垂直的判定,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=alog2(|x|+4)+x2+a2-8有唯一的零点,则实数a的值是(  )
A.-4B.2C.±2D.-4或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知曲线C:y=x2+2x在点(0,0)处的切线为l,则由C,l以及直线x=1围成的区域面积等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,某数学兴趣小组为了测量西安大雁塔高AB,选取与塔底B在同一水平面
内的两个测点C与D.测得∠BCD=105°,∠BDC=45°,CD=26.4m,并在C点测得塔顶A的仰角为60°,则塔高AB=64.68m.($\sqrt{6}$≈2.45,结果精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若复数z满足(2-i)z=1+i,则复数z在复平面上对应的点在第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.a2+b2=1是asinθ+bcosθ≤1恒成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知直线l:y=kx+1(k>0)关于直线y=x+1对称的直线为l1,直线l,l1与椭圆E:$\frac{x^2}{4}+{y^2}$=1分别交于点A、M和A、N,记直线l1的斜率为k1
(Ⅰ)求k•k1的值;
(Ⅱ)当k变化时,试问直线MN是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如表:
投资股市获利40%不赔不赚亏损20%购买基金获利20%不赔不赚亏损10%
概率P$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$概率Pp$\frac{1}{3}$q
( I)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于$\frac{4}{5}$,求p的取值范围;
( II)某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选出一种,若购买基金现阶段分析出$p=\frac{1}{2}$,那么选择何种方案可使得一年后的投资收益的数学期望值较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆ρ=4cosθ的圆心到直线tanθ=1的距离为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案