精英家教网 > 高中数学 > 题目详情
1.如图,某数学兴趣小组为了测量西安大雁塔高AB,选取与塔底B在同一水平面
内的两个测点C与D.测得∠BCD=105°,∠BDC=45°,CD=26.4m,并在C点测得塔顶A的仰角为60°,则塔高AB=64.68m.($\sqrt{6}$≈2.45,结果精确到0.01).

分析 先在△BCD中利用正弦定理计算BC,再在△ABC中求出AB.

解答 解:在△BCD中,∠CBD=180°-45°-105°=30°,
由正弦定理得$\frac{BC}{sin∠BDC}=\frac{CD}{sin∠CBD}$,即$\frac{BC}{\frac{\sqrt{2}}{2}}=\frac{26.4}{\frac{1}{2}}$,解得BC=26.4×$\sqrt{2}$,
在Rt△ABC中,∵tan∠ACB=$\frac{AB}{BC}$=$\sqrt{3}$,
∴AB=$\sqrt{3}$BC=26.4×$\sqrt{6}$≈64.68.
故答案为:64.68.

点评 本题考查了解三角形的实际应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2^n}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知函数y=2kx(k>0)与函数y=x2的图象所围成的阴影部分的面积为$\frac{32}{3}$,则实数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x2-8x+12≤0},B={x|x≥5},则A∩(∁RB)=(  )
A.[5,6]B.[2,5]C.[2,5)D.(-∞,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$,则x+2y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P为双曲线${x^2}-\frac{y^2}{15}=1$右支上一点,M,N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m-n|=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.
求证:(1)PA∥平面QBD;
(2)BD⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\sqrt{-x}+\sqrt{x(x+1)}$的定义域为{x|x≤-1或x=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知常数p>0,数列{an}满足an+1=|p-an|+2an+p,n∈N*.
(1)若a1=-1,p=1,
①求a4的值;
②求数列{an}的前n项和Sn
(2)若数列{an}中存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列,求$\frac{{a}_{1}}{p}$的取值范围.

查看答案和解析>>

同步练习册答案