精英家教网 > 高中数学 > 题目详情
16.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$,则x+2y的最大值为7.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{y=x+2}\\{x+y=4}\end{array}\right.$,解得A(1,3),
令z=x+2y,化为y=-$\frac{x}{2}+\frac{z}{2}$,由图可知,当直线y=-$\frac{x}{2}+\frac{z}{2}$过A时,直线在y轴上的截距最大,z有最大值为7.
故答案为:7.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”是“log2a>log2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a∈R,则“a<0”是“|x|+|x+1|>a恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知曲线C:y=x2+2x在点(0,0)处的切线为l,则由C,l以及直线x=1围成的区域面积等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知α为锐角,若cos(α+$\frac{π}{4}$)=$\frac{5}{13}$,则sinα=(  )
A.$\frac{5\sqrt{2}}{13}$B.$\frac{12}{13}$C.$\frac{7\sqrt{2}}{26}$D.$\frac{17\sqrt{2}26}{\;}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,某数学兴趣小组为了测量西安大雁塔高AB,选取与塔底B在同一水平面
内的两个测点C与D.测得∠BCD=105°,∠BDC=45°,CD=26.4m,并在C点测得塔顶A的仰角为60°,则塔高AB=64.68m.($\sqrt{6}$≈2.45,结果精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若复数z满足(2-i)z=1+i,则复数z在复平面上对应的点在第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知直线l:y=kx+1(k>0)关于直线y=x+1对称的直线为l1,直线l,l1与椭圆E:$\frac{x^2}{4}+{y^2}$=1分别交于点A、M和A、N,记直线l1的斜率为k1
(Ⅰ)求k•k1的值;
(Ⅱ)当k变化时,试问直线MN是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=\left\{\begin{array}{l}-x+3a\\-{(x+1)^2}+2\end{array}\right.$$\begin{array}{l}x<0\\ x≥0\end{array}$,是R上的减函数,则a的取值范围是(  )
A.(0,1)B.$[\frac{1}{3}$,+∞)C.(0,$\frac{1}{3}]$D.(0,$\frac{2}{3}]$

查看答案和解析>>

同步练习册答案