精英家教网 > 高中数学 > 题目详情
15.函数$f(x)=\left\{\begin{array}{l}-x+3a\\-{(x+1)^2}+2\end{array}\right.$$\begin{array}{l}x<0\\ x≥0\end{array}$,是R上的减函数,则a的取值范围是(  )
A.(0,1)B.$[\frac{1}{3}$,+∞)C.(0,$\frac{1}{3}]$D.(0,$\frac{2}{3}]$

分析 根据题意,有函数单调性的性质可得3a≥f(0)=-1,解得开a的取值范围,即可得答案.

解答 解:根据题意,函数$f(x)=\left\{\begin{array}{l}-x+3a\\-{(x+1)^2}+2\end{array}\right.$$\begin{array}{l}x<0\\ x≥0\end{array}$,
有f(0)=-1,
若函数f(x)在是R上的减函数,
则有3a≥f(0)=-1,
解可得a≥-$\frac{1}{3}$;
即a的取值范围是[$\frac{1}{3}$,+∞);
故选:B.

点评 本题考查函数单调性的性质,关键是掌握函数单调性的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$,则x+2y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数a,b均不为零,且x2a=$\frac{1}{x^b}$(x>0),则(xa-2xb9展开式中的常数项等于(  )
A.672B.-672C.-762D.762

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,曲线C1的普通方程为x2+y2+2x-4=0,曲线C2的参数方程为$\left\{\begin{array}{l}x={t^2}\\ y=t\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.
(1)求曲线C1,C2的极坐标方程;
(2)求曲线C1与C2交点的极坐标(ρ,θ),其中ρ≥0,0≤θ<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直角坐标方程的x2+y2-2x+3y=0极坐标方程为ρ=2cosθ-3sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知常数p>0,数列{an}满足an+1=|p-an|+2an+p,n∈N*.
(1)若a1=-1,p=1,
①求a4的值;
②求数列{an}的前n项和Sn
(2)若数列{an}中存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列,求$\frac{{a}_{1}}{p}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某设备的使用年限x与所支出的维修费用y的统计数据如表:
使用年限x(单位:年)23456
维修费用y(单位:万元)1.54.55.56.57.0
根据表可得回归直线方程为$\stackrel{∧}{y}$=1.3x+$\stackrel{∧}{a}$,据此模型预测,若使用年限为14年,估计维修费用约为18万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求过(-2,3)点且斜率为2的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$.若存在实数b,使得函数y=f(x)-bx恰有2个零点,则实数a的取值范围是(-∞,0)∪(0,1).

查看答案和解析>>

同步练习册答案