精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$.若存在实数b,使得函数y=f(x)-bx恰有2个零点,则实数a的取值范围是(-∞,0)∪(0,1).

分析 令g(x)=$\frac{f(x)}{x}$,则只需让g(x)=b存在唯一一个非零解即可.讨论a的范围,作出g(x)的图象,根据图象判断即可得出结论.

解答 解:显然x=0必为f(x)-bx的一个零点,
当x≠0时,令f(x)-bx=0得b=$\frac{f(x)}{x}$,
令g(x)=$\frac{f(x)}{x}$=$\left\{\begin{array}{l}{{x}^{2},x≤a}\\{x,x>a}\end{array}\right.$,则b=g(x)存在唯一一个非零解.
当a<0时,作出g(x)的函数图象,如图所示:

显然当a<b<a2且b≠0时,g(x)=b总存在唯一一个非零解,符合题意;
当a>0时,作出g(x)的函数图象如图所示:

若要使b=g(x)存在唯一一个非零解,则a>a2,解得0<a<1.
同理,当a=0时,显然g(x)=b无非零解,
综上,a的取值范围是(-∞,0)∪(0,1).
故答案为:(-∞,0)∪(0,1).

点评 本题考查了函数零点与哈数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=\left\{\begin{array}{l}-x+3a\\-{(x+1)^2}+2\end{array}\right.$$\begin{array}{l}x<0\\ x≥0\end{array}$,是R上的减函数,则a的取值范围是(  )
A.(0,1)B.$[\frac{1}{3}$,+∞)C.(0,$\frac{1}{3}]$D.(0,$\frac{2}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为(  )
A.056,080,104B.054,078,102C.054,079,104D.056,081,106

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线C2的参数方程为$\left\{\begin{array}{l}{x=cosβ}\\{y=1+sinβ}\end{array}\right.$(β为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和曲线C2的极坐标方程;
(2)已知射线l1:θ=α($\frac{π}{6}$<α<$\frac{π}{2}$),将射线l1顺时针方向旋转$\frac{π}{6}$得到l2:θ=α-$\frac{π}{6}$,且射线l1与曲线C1交于两点,射线l2与曲线C2交于O,Q两点,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为ρ=-2cosθ+4sinθ.
(Ⅰ)将曲线C1的参数方程化为普通方程,曲线C2的极坐标方程化为直角坐标方程.
(Ⅱ)曲线C1,C2是否相交,若不相交,请说明理由;若交于一点,则求出此点的极坐标;若交于两点,则求出过两点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输入n=5,则输出的S值为(  )
A.$\frac{1}{20}$B.$\frac{5}{16}$C.$\frac{16}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的半圆分别交BA及其延长线于点M,N,点P在$\widehat{MDN}$上运动(如图).若$\overrightarrow{AP}=λ\overrightarrow{AE}+μ\overrightarrow{BF}$,其中λ,μ∈R,则2λ-5μ的取值范围是(  )
A.[-2,2]B.$[{-2,2\sqrt{2}}]$C.$[{-2\sqrt{2},2}]$D.$[{-2\sqrt{2},2\sqrt{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在极坐标系中,曲线C:sinθ=|cosθ|上不同的两点M,N到直线l:ρcosθ-2ρsinθ=2的距离为$\sqrt{5}$,则|MN|=(  )
A.$2\sqrt{5}$B.$4\sqrt{5}$C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+a(x2-3x+2),其中a为参数.
(1)当a=0时,求函数f(x)在x=1处的切线方程;
(2)讨论函数f(x)极值点的个数,并说明理由;
(3)若对任意x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案