| A. | [-2,2] | B. | $[{-2,2\sqrt{2}}]$ | C. | $[{-2\sqrt{2},2}]$ | D. | $[{-2\sqrt{2},2\sqrt{2}}]$ |
分析 建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),
F(1,1.5),P(cosα,sinα)(0≤α≤π),由$\overrightarrow{AP}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$得,
(cosα,sinα)=λ(2,1)+μ(-1,$\frac{3}{2}$),λ,μ用参数α进行表示,
利用辅助角公式化简,即可得出结论.
解答 解:建立如图所示的坐标系,
则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),
P(cosα,sinα)(0≤α≤π),
由$\overrightarrow{AP}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$得,(cosα,sinα)=λ(2,1)+μ(-1,$\frac{3}{2}$)
⇒cosα=2λ-μ,sinα=λ+$\frac{3}{2}μ$
⇒λ=$\frac{3}{8}cosα+\frac{1}{4}sinα$,$μ=\frac{1}{2}sinα-\frac{1}{4}cosα$
∴2λ-5μ=2($\frac{3}{8}cosα+\frac{1}{4}sinα$)-5($\frac{1}{2}sinα-\frac{1}{4}cosα$)
=-2(sinα-cosα)=-2$\sqrt{2}$sin($α-\frac{π}{4}$)
∵$α-\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$]∴-2$\sqrt{2}$sin($α-\frac{π}{4}$)∈[-2$\sqrt{2}$,2],
即2λ-5μ的取值范围是[-2$\sqrt{2}$,2].
故选:C![]()
点评 本题考查平面向量的坐标运算,考查学生的计算能力,正确利用坐标系是关键.属于中档题.
科目:高中数学 来源: 题型:填空题
| 使用年限x(单位:年) | 2 | 3 | 4 | 5 | 6 |
| 维修费用y(单位:万元) | 1.5 | 4.5 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com