精英家教网 > 高中数学 > 题目详情
9.已知右焦点为F的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(1,$\frac{3}{2}$),直线x=a与抛物线L:x2=$\frac{8}{3}$y交于点N,且$\overrightarrow{OM}$=$\overrightarrow{FN}$,其中O为坐标原点.
(1)求椭圆C的方程;
(2)直线l与椭圆C交于A、B两点.
①若直线l与x轴垂直,过点P(4,0)的直线PB交椭圆C于另一点E,证明直线AE与x轴相交于定点;
②已知D为椭圆C的左顶点,若l与直线DM平行,判断直线MA,MB是否关于直线FM对称,并说明理由.

分析 (1)将由$\overrightarrow{OM}$=$\overrightarrow{FN}$,即可求得N点坐标,将M代入抛物线方程,即可求得a,代入椭圆方程,即可求得b的值,即可求得椭圆方程;
(2)①设直线PB的方程,设B,E点坐标,将直线PB代入椭圆方程,求得直线AE的方程,利用韦达定理即可求得x的值,直线AE与x轴相交于定点(1,0);
②设直线l的方程,代入椭圆方程,由△>0,即可求得n的取值范围,利用直线的斜率公式及韦达定理kMA+kMB=0,则直线MA,MB关于直线x=1对称.

解答 解:(1)设N(a,y0),连接MN,由$\overrightarrow{OM}$=$\overrightarrow{FN}$,则OMNF为平行四边形,则y0=$\frac{3}{2}$,
将M(1,$\frac{3}{2}$)代入抛物线方程:解得:a=2,
将M(1,$\frac{3}{2}$)代入椭圆方程:$\frac{1}{4}+\frac{9}{4{b}^{2}}=1$,解得:b2=3,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)①证明:由题意,直线PB的斜率存在,设直线PB的方程为y=k(x-4),B(x1,y1),E(x2,y2),
则A(x1,-y1),$\left\{\begin{array}{l}{y=k(x-4)}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,整理得:(3+4k2)x2-32k2x+64k2-12=0,
x1+x2=$\frac{32{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{64{k}^{2}-12}{3+4{k}^{2}}$,①
则直线AE的方程为:y-y2=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x2),令y=0,x=x2-$\frac{{y}_{2}({x}_{2}-{x}_{1})}{{y}_{1}+{y}_{2}}$,
由y1=k(x1-4),y2=k(x2-4),
∴x=$\frac{2{x}_{1}{x}_{2}-4({x}_{1}+{x}_{2})}{{x}_{1}+{x}_{2}-8}$,
∴x=1,
∴直线AE与x轴相交于定点(1,0);
②由题意可知,直线MF的方程为x=1,则kOM=$\frac{1}{2}$,设直线l:y=$\frac{1}{2}$x+n,(n≠1),
设A(x3,y3),B(x4,y4),$\left\{\begin{array}{l}{y=\frac{1}{2}x+n}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:x2+nx+n2-3=0,
△=n2-4×(n2-3)=12-3n2>0,即b∈(-2,2),且n≠1,
x3+x4=-n,x3x4=n2-3,
则kMA+kMB=$\frac{{y}_{3}-\frac{3}{2}}{{x}_{3}-1}$+$\frac{{y}_{4}-\frac{3}{2}}{{x}_{4}-1}$=$\frac{\frac{1}{2}{x}_{3}+n-\frac{3}{2}}{{x}_{3}-1}$+$\frac{\frac{1}{2}{x}_{4}+n-\frac{3}{2}}{{x}_{4}-1}$
=1+$\frac{n-1}{{x}_{3}-1}$+$\frac{n-1}{{x}_{4}-1}$=1+$\frac{(n-1)({x}_{1}+{x}_{2}-2)}{{x}_{1}{x}_{2}-({x}_{3}+{x}_{4})+1}$=1-$\frac{(n-1)(n+2)}{{n}^{2}+n-2}$=0,
直线MA,MB关于直线x=1对称.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为$ρcos({θ-\frac{π}{3}})=1$,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求以P为圆心,且过原点的圆的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为ρ=-2cosθ+4sinθ.
(Ⅰ)将曲线C1的参数方程化为普通方程,曲线C2的极坐标方程化为直角坐标方程.
(Ⅱ)曲线C1,C2是否相交,若不相交,请说明理由;若交于一点,则求出此点的极坐标;若交于两点,则求出过两点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的半圆分别交BA及其延长线于点M,N,点P在$\widehat{MDN}$上运动(如图).若$\overrightarrow{AP}=λ\overrightarrow{AE}+μ\overrightarrow{BF}$,其中λ,μ∈R,则2λ-5μ的取值范围是(  )
A.[-2,2]B.$[{-2,2\sqrt{2}}]$C.$[{-2\sqrt{2},2}]$D.$[{-2\sqrt{2},2\sqrt{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}-{2^x},x<2\\{log_3}({x^2}-1),x≥2\end{array}$,若f(a)=1,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在极坐标系中,曲线C:sinθ=|cosθ|上不同的两点M,N到直线l:ρcosθ-2ρsinθ=2的距离为$\sqrt{5}$,则|MN|=(  )
A.$2\sqrt{5}$B.$4\sqrt{5}$C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若随机变量X服从正态分布N(4,1),则P(x>6)的值为(  )(参考数据:若随机变量X~N(μ,σ2),则P(μ-σ<x<μ+σ)=0.6826,P(μ-2σ<x<μ+2σ)=0.9544,P(μ-3σ<x<μ+3σ)=0.9974)
A.0.1587B.0.0228C.0.0013D.0.4972

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosα\\ y=sinα\end{array}\right.$(α为参数);在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.
(Ⅰ)求C1的普通方程和C2的直角坐标方程;
(Ⅱ)若射线l:y=kx(x≥0)分别交C1,C2于A,B两点(A,B异于原点).当$k∈(1,\sqrt{3}]$时,求|OA|•|OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.正四棱柱的体对角线长为6.面对角线长为3$\sqrt{3}$,则它的侧面积是36$\sqrt{2}$或18$\sqrt{6}$.

查看答案和解析>>

同步练习册答案