精英家教网 > 高中数学 > 题目详情
19.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为$ρcos({θ-\frac{π}{3}})=1$,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求以P为圆心,且过原点的圆的参数方程.

分析 (1)由$ρcos({θ-\frac{π}{3}})=1$,得$ρ({\frac{1}{2}cosθ+\frac{{\sqrt{3}}}{2}sinθ})=1$,利用互化公式可得:C的直角坐标方程.θ=0,$θ=\frac{π}{2}$时,代入即可得出M,N的坐标.
(2)M点的直角坐标为(2,0),N点的直角坐标为$({0,\frac{{2\sqrt{3}}}{3}})$,可得中点P点的直角坐标为$({1,\frac{{\sqrt{3}}}{3}})$,且r=|OP|,即可得出所求的圆的参数方程.

解答 解:(1)由$ρcos({θ-\frac{π}{3}})=1$,得$ρ({\frac{1}{2}cosθ+\frac{{\sqrt{3}}}{2}sinθ})=1$,
从而C的直角坐标方程为$\frac{1}{2}x+\frac{{\sqrt{3}}}{2}y=1$,
θ=0时,ρ=2,所以M(2,0),
$θ=\frac{π}{2}$时,$ρ=\frac{{2\sqrt{3}}}{3}$,所以$N({\frac{{2\sqrt{3}}}{3},\frac{π}{2}})$;
(2)M点的直角坐标为(2,0),N点的直角坐标为$({0,\frac{{2\sqrt{3}}}{3}})$,
所以P点的直角坐标为$({1,\frac{{\sqrt{3}}}{3}})$,且$r=|{PO}|=\frac{{2\sqrt{3}}}{3}$,
所以所求圆的参数方程为$\left\{{\begin{array}{l}{x=1+\frac{{2\sqrt{3}}}{3}cosθ}\\{y=\frac{{\sqrt{3}}}{3}+\frac{{2\sqrt{3}}}{3}sinθ}\end{array}}\right.$(θ为参数).

点评 本题考查了极坐标方程化为直角坐标方程、中点坐标公式、圆的参数方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=$\frac{π}{4}$,则椭圆和双曲线的离心率乘积的最小值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直角坐标方程的x2+y2-2x+3y=0极坐标方程为ρ=2cosθ-3sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某设备的使用年限x与所支出的维修费用y的统计数据如表:
使用年限x(单位:年)23456
维修费用y(单位:万元)1.54.55.56.57.0
根据表可得回归直线方程为$\stackrel{∧}{y}$=1.3x+$\stackrel{∧}{a}$,据此模型预测,若使用年限为14年,估计维修费用约为18万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)满足xf′(x)-f(x)=xex且f(-1)=$\frac{1}{e}$,则x<0时f(x)=(  )
A.既有极大值又有极小值B.有极大值无极小值
C.既无极大值又无极小值D.有极小值无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求过(-2,3)点且斜率为2的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在一次实验中,测得(x,y)的四组值分别是A(6,2),B(8,3),C(10,5),D(12,6),则y与x之间的回归直线方程为(  )
A.$\hat y=2.3x-0.7$B.$\hat y=2.3x+0.7$C.$\hat y=0.7x-2.3$D.$\hat y=0.7x+2.3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|$\frac{2}{3}$x+1|.
(1)若不等式f(x)≥-|x|+a恒成立,求实数a的取值范围;
(2)若对于实数x,y,有|x+y+1|≤$\frac{1}{3}$,|y-$\frac{1}{3}$|≤$\frac{2}{3}$,求证:f(x)≤$\frac{7}{9}$,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知右焦点为F的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(1,$\frac{3}{2}$),直线x=a与抛物线L:x2=$\frac{8}{3}$y交于点N,且$\overrightarrow{OM}$=$\overrightarrow{FN}$,其中O为坐标原点.
(1)求椭圆C的方程;
(2)直线l与椭圆C交于A、B两点.
①若直线l与x轴垂直,过点P(4,0)的直线PB交椭圆C于另一点E,证明直线AE与x轴相交于定点;
②已知D为椭圆C的左顶点,若l与直线DM平行,判断直线MA,MB是否关于直线FM对称,并说明理由.

查看答案和解析>>

同步练习册答案