精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)满足xf′(x)-f(x)=xex且f(-1)=$\frac{1}{e}$,则x<0时f(x)=(  )
A.既有极大值又有极小值B.有极大值无极小值
C.既无极大值又无极小值D.有极小值无极大值

分析 构造函数,利用已知条件判断函数的单调性,然后求解函数的极值即可.

解答 解:设F(x)=$\frac{f(x)}{x}$,F′(x)=($\frac{f(x)}{x}$)′=$\frac{xf′(x)-f(x)}{{x}^{2}}$=$\frac{{e}^{x}}{x}$,
当x>0时,F′(x)>0,F(x)单调递增,
当x<0时,F′(x)<0,F(x)单调递减,
x<0时,f(x)=xF(x)=ex,f(x)是增函数,
既无极大值又无极小值,
故选:C.

点评 本题考查函数的导数的应用,函数的单调性与函数的极值的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点A(-2,0),且点(-1,$\frac{3}{2}$)在椭圆上,F1、F2分别是椭圆的左、右焦点.过点A作斜率为k(k>0)的直线交椭圆E于另一点B,直线BF2交椭圆E于点C.
(1)求椭圆E的标准方程;
(2)若△CF1F2为等腰三角形,求点B的坐标;
(3)若F1C⊥AB,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若向量$\overrightarrow{a}$=(-2,2)与$\overrightarrow{b}$=(1,y)的夹角为钝角,则y的取值范围为(-∞,-1)∪(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点A(a,0),(a>0),且垂直于极轴的直线l的极坐标方程为(  )
A.ρsinθ=aB.ρcosθ=aC.x=aD.y=a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ)证明:不论t为何值,直线l与曲线C恒有两个公共点;
(Ⅱ)以α为参数,求直线l与曲线C相交所得弦AB的中点轨迹的参数方程,并判断该轨迹的曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为$ρcos({θ-\frac{π}{3}})=1$,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求以P为圆心,且过原点的圆的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1的方程为x2+y2-8x-10y+16=0.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设等差数列{an}的前n项和为Sn,若a5=3,S10=40,则nSn的最小值为-32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}-{2^x},x<2\\{log_3}({x^2}-1),x≥2\end{array}$,若f(a)=1,则a的值为2.

查看答案和解析>>

同步练习册答案